The thermal transitions of confined LiCl aqueous solutions were studied by differential scanning calorimetry for solutions with salt concentrations with eutectic (R = 7) and subeutectic (R > 7) compositions (R = moles of water/moles of LiCl). The confinement media consist of mesoporous silica with pore diameters between 2 nm and 58 nm, with a small negative surface charge density. The vitrification of confined LiCl aqueous solutions was observed in all samples, expanding the vitrification region up to R = 15, and probably beyond for cooling rates of ≈1000 K/min. Ice crystallization was observed in some samples, except for those confined in the narrower pores. The onset and endpoint glass transition temperatures for the confined eutectic samples increase by 2 K and 5 K, respectively, for the smallest pore diameters (2 nm), which is equivalent to the effect of applying a pressure of up to 100 MPa to the bulk sample. This behavior is opposite of that reported for aqueous subeutectic NaCl solutions confined in silica glasses of similar sizes. We speculate that this is due to the fact that the mechanism of double confinement of the NaCl solution, between the pore wall and the precipitated ice, is not operative for LiCl solutions. Instead, the Li+ ions might force the hydration water in to a high-density state.

1.
J.
Meissner
,
A.
Prause
, and
G. H.
Findenegg
, “
Secondary confinement of water observed in eutectic melting of aqueous salt systems in nanopores
,”
J. Phys. Chem. Lett.
7
,
1816
1820
(
2016
).
2.
L.
Zhao
,
L.
Pan
,
Z.
Cao
, and
Q.
Wang
, “
Confinement-induced vitrification of aqueous sodium chloride solutions
,”
Chem. Phys. Lett.
647
,
170
174
(
2016
).
3.
J.
Swenson
,
K.
Elamin
,
H.
Jansson
, and
S.
Kittaka
, “
Why is there no clear glass transition of confined water?
,”
Chem. Phys.
424
,
20
25
(
2013
).
4.
K.
Elamin
,
H.
Jansson
,
S.
Kittaka
, and
J.
Swenson
, “
Different behavior of water in confined solutions of high and low solute concentrations
,”
Phys. Chem. Chem. Phys.
15
,
18437
18444
(
2013
).
5.
D. C.
Martínez Casillas
,
M. P.
Longinotti
,
M. M.
Bruno
,
F.
Vaca Chávez
,
R. H.
Acosta
, and
H. R.
Corti
, “
Diffusion of water and electrolytes in mesoporous silica with a wide range of pore sizes
,”
J. Phys. Chem. C
122
,
3638
3647
(
2018
).
6.
A.
Bogdan
and
T.
Loerting
, “
Phase separation during freezing upon warming of aqueous solutions
,”
J. Chem. Phys.
141
,
18C533
(
2014
).
7.
C. A.
Angell
and
E. J.
Sare
, “
Liquid-liquid inmiscibility in common aqueous salt solutions at low temperatures
,”
J. Chem. Phys.
49
,
4713
4714
(
1968
).
8.
I.
Kohl
,
L.
Bachmann
,
E.
Mayer
,
A.
Hallbrucker
, and
T.
Loerting
, “
Liquid-like relaxation in hyperquenched water at T < 140 K
,”
Phys. Chem. Chem. Phys.
7
,
3210
3220
(
2005
).
9.
K.
Amann-Winkel
,
R.
Böhmer
,
F.
Fujara
,
C.
Gainaru
,
B.
Geil
, and
T.
Loerting
, “
Colloquium: Water’s controversial glass transitions
,”
Rev. Mod. Phys.
88
,
011002
(
2016
).
10.
C. A.
Angell
and
E. J.
Sare
, “
Glass forming composition regions and glass transition temperatures of aqueous electrolyte solutions
,”
J. Chem. Phys.
52
,
1058
1068
(
1970
).
11.
G. N.
Ruiz
,
L. E.
Bove
,
H. R.
Corti
, and
T.
Loerting
, “
Pressure-induced transformations in aqueous LiCl solutions at 77 K
,”
Phys. Chem. Chem. Phys.
16
,
18553
18562
(
2014
).
12.
K.
Hofer
,
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
, “
Vitrified dilute aqueous solutions. 3. Plasticization of water’s H-bonded network and the glass transition temperature’s minimum
,”
J. Phys. Chem.
93
,
4674
4677
(
1989
).
13.
K.
Hofer
,
G.
Astl
,
E.
Mayer
, and
G. P.
Johari
, “
Vitrified dilute aqueous solutions. 4. Effects of electrolytes and polyhydric alcohols on the glass transition features of hyperquenched aqueous solutions
,”
J. Phys. Chem.
95
,
10777
10781
(
1991
).
14.
M.
Kobayashi
and
H.
Tanaka
, “
Relationship between the phase diagram, the glass-forming ability, and the fragility of a water/salt mixture
,”
J. Phys. Chem. B
115
,
14077
14090
(
2011
).
15.
M.
Kobayashi
and
H.
Tanaka
, “
Possible link of the V-shaped phase diagram of the glass-forming ability and fragility in a water/salt mixture
,”
Phys. Rev. Lett.
106
,
125703
(
2011
).
16.
D. R.
MacFarlane
,
J.
Scheirer
, and
S. I.
Smedley
, “
Pressure coefficients of conductance and of glass transition temperature in concentrated LiCl, LiI and AlCl3 solutions
,”
J. Phys. Chem.
90
,
2168
2173
(
1986
).
17.
H.
Kanno
, “
Double glass transition in aqueous lithium chloride solutions vitrified at high pressures: Evidence for a liquid-liquid-immiscibility
,”
J. Phys. Chem.
91
,
1967
1971
(
1987
).
18.
O.
Mishima
, “
The glass-to-liquid transition of the emulsified high-density amorphous ice made by pressure-induced amorphization
,”
J. Chem. Phys.
121
,
3161
3164
(
2004
).
19.
Y.
Suzuki
and
O.
Mishima
, “
Sudden switchover between the polyamorphic phase separation and the glass transition in glassy LiCl aqueous solutions
,”
J. Chem. Phys.
138
,
084507
(
2013
).
20.
G. N.
Ruiz
,
K.
Amann-Winkel
,
L. E.
Bove
,
H. R.
Corti
, and
T.
Loerting
, “
Calorimetric study of water’s two glass transitions in the presence of LiCl
,”
Phys. Chem. Chem. Phys.
20
,
6401
6408
(
2018
).
21.
J.
Stern
,
M.
Seidl-Nigsch
, and
T.
Loerting
, “
Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
9191
9196
(
2019
).
22.
C. M.
Tonauer
,
M.
Seidl-Nigsch
, and
T.
Loerting
, “
High-density amorphous ice: Nucleation of nanosized low-density amorphous ice
,”
J. Phys.: Condens. Matter
30
,
034002
(
2018
).
23.
M.
Seidl
,
A.
Fayter
,
J. N.
Stern
,
G.
Zifferer
, and
T.
Loerting
, “
Shrinking water’s no man’s land by lifting its low-temperature boundary
,”
Phys. Rev. B
91
,
144201
(
2015
).
24.
K.
Amann-Winkel
,
C.
Gainaru
,
P. H.
Handle
,
M.
Seidl
,
H.
Nelson
,
R.
Böhmer
, and
T.
Loerting
, “
Water’s second glass transition
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
17720
17725
(
2013
).
25.
V.
Fuentes-Landete
,
L. J.
Plaga
,
M.
Keppler
,
R.
Böhmer
, and
T.
Loerting
, “
Nature of water’s second glass transition elucidated by doping and isotope substitution experiments
,”
Phys. Rev. X
9
,
011015
(
2019
).
26.
D. R.
MacFarlane
and
M.
Fragoulis
, “
Theory of devitrification in multicomponent glass forming systems under diffusion control
,”
Phys. Chem. Glasses
27
,
228
234
(
1986
).
27.
C. T.
Moynihan
,
A. J.
Easteal
,
M. A.
De Bolt
, and
J.
Tucker
, “
Dependence of the fictive temperature of glass on cooling rate
,”
J. Am. Ceram. Soc.
59
,
12
16
(
1976
).
28.
M. A.
DeBolt
,
A. J.
Easteal
,
P. B.
Macedo
, and
C. T.
Moynihan
, “
Analysis of structural relaxation in glass using rate heating data
,”
J. Am. Ceram. Soc.
59
,
16
21
(
1976
).
29.
A. J.
Easteal
,
J. A.
Wilder
,
R. K.
Mohr
, and
C. T.
Moynihan
, “
Heat capacity and structural relaxation of enthalpy in As2Se3 glass
,”
J. Am. Ceram. Soc.
60
,
134
138
(
1977
).

Supplementary Material

You do not currently have access to this content.