We present a perturbation theory that combines the use of a third-order Barker–Henderson expansion of the Helmholtz energy with Mie-potentials that include first- (Mie-FH1) and second-order (Mie-FH2) Feynman–Hibbs quantum corrections. The resulting equation of state, the statistical associating fluid theory for Mie potentials of variable range corrected for quantum effects (SAFT-VRQ-Mie), is compared to molecular simulations and is seen to reproduce the thermodynamic properties of generic Mie-FH1 and Mie-FH2 fluids accurately. SAFT-VRQ Mie is exploited to obtain optimal parameters for the intermolecular potentials of neon, helium, deuterium, ortho-, para-, and normal-hydrogen for the Mie-FH1 and Mie-FH2 formulations. For helium, hydrogen, and deuterium, the use of either the first- or second-order corrections yields significantly higher accuracy in the representation of supercritical densities, heat capacities, and speed of sounds when compared to classical Mie fluids, although the Mie-FH2 is slightly more accurate than Mie-FH1 for supercritical properties. The Mie-FH1 potential is recommended for most of the fluids since it yields a more accurate representation of the pure-component phase equilibria and extrapolates better to low temperatures. Notwithstanding, for helium, where the quantum effects are largest, we find that none of the potentials give an accurate representation of the entire phase envelope, and its thermodynamic properties are represented accurately only at temperatures above 20 K. Overall, supercritical heat capacities are well represented, with some deviations from experiments seen in the liquid phase region for helium and hydrogen.

1.
E.
Wigner
,
Phys. Rev.
40
,
749
(
1932
).
2.
J. G.
Kirkwood
,
Phys. Rev.
44
,
31
(
1933
).
3.
R. P.
Feynman
,
A. R.
Hibbs
, and
D. F.
Styer
,
Quantum Mechanics and Path Integrals
, Emended ed. (
McGraw-Hill
,
New York
,
2005
), p.
384
.
4.
S.
Kim
,
D.
Henderson
, and
J.
Barker
,
Can. J. Phys.
47
,
99
(
1969
).
5.
C.
Gray
and
K.
Gubbins
,
Theory of Molecular Fluids: Volume 1: Fundamentals
(
Oxford University Press
,
1984
).
6.
K.
Lucas
,
Applied Statistical Thermodynamics
(
Springer-Verlag
,
1991
).
7.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
8.
A. V. A.
Kumar
,
H.
Jobic
, and
S. K.
Bhatia
,
J. Phys. Chem. B
110
,
16666
(
2006
).
9.
J. M.
Salazar
,
S.
Lectez
,
C.
Gauvin
,
M.
Macaud
,
J. P.
Bellat
,
G.
Weber
,
I.
Bezverkhyy
, and
J. M.
Simon
,
Int. J. Hydrogen Energy
42
,
13099
(
2017
).
10.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
J. Chem. Phys.
114
,
7312
(
2001
).
11.
R.
Rodríguez-Cantano
,
R.
Pérez de Tudela
,
M.
Bartolomei
,
M. I.
Hernández
,
J.
Campos-Martínez
,
T.
González-Lezana
,
P.
Villarreal
,
J.
Hernández-Rojas
, and
J.
Bretón
,
J. Phys. Chem. A
120
,
5370
(
2016
).
12.
P.
Kowalczyk
,
L.
Brualla
,
P.
Gauden
, and
A. P.
Terzyk
,
Phys. Chem. Chem. Phys.
11
,
9182
(
2009
).
13.
V. M.
Trejos
,
A.
Gil-Villegas
, and
A.
Martinez
,
J. Chem. Phys.
139
,
184505
(
2013
).
14.
Ø.
Wilhelmsen
,
D.
Berstad
,
A.
Aasen
,
P.
Nekså
, and
G.
Skaugen
,
Int. J. Hydrogen Energy
43
,
5033
(
2018
).
15.
R.
Span
,
Multiparameter Equations of State
(
Springer-Verlag
,
Berlin
,
2000
).
16.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
,
Ind. Eng. Chem. Res.
56
,
3503
(
2017
).
17.
P. J.
Leonard
,
D.
Henderson
, and
J. A.
Barker
,
Trans. Faraday Soc.
66
,
2439
(
1970
).
18.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
,
J. Chem. Phys.
139
,
154504
(
2013
).
19.
Ø.
Wilhelmsen
,
T. T.
Trinh
,
A.
Lervik
,
V. K.
Badam
,
S.
Kjelstrup
, and
D.
Bedeaux
,
Phys. Rev. E
93
,
032801
(
2016
).
20.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
21.
Q.
Wang
and
J. K.
Johnson
,
Fluid Phase Equilib.
132
,
93
(
1997
).
22.
L. M.
Sesé
and
R.
Ledesma
,
J. Chem. Phys.
102
,
3776
(
1995
).
23.
L. M.
Sesé
and
L. E.
Bailey
,
J. Chem. Phys.
119
,
10256
(
2003
).
24.
V. M.
Trejos
and
A.
Gil-Villegas
,
J. Chem. Phys.
136
,
184506
(
2012
).
25.
B.
Singh
and
S.
Sinha
,
J. Chem. Phys.
67
,
3645
(
1977
).
26.
B.
Singh
and
S.
Sinha
,
J. Chem. Phys.
68
,
562
(
1978
).
27.
S.
Contreras
,
C.
Serna
, and
A.
Gil-Villegas
,
Mol. Phys.
116
,
3425
3433
(
2018
).
28.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
29.
V.
Papaioannou
,
T.
Lafitte
,
C.
Avendaño
,
C. S.
Adjiman
,
G.
Jackson
,
E. A.
Müller
, and
A.
Galindo
,
J. Chem. Phys.
140
,
054107
(
2014
).
30.
C.
Serna
and
A.
Gil-Villegas
,
Mol. Phys.
114
,
2700
(
2016
).
31.
C.
Bender
and
S.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
Springer
,
New York
,
2005
).
32.
J.-P.
Hansen
and
J.-J.
Weis
,
Phys. Rev.
188
,
314
(
1969
).
33.
L. M.
Sesé
,
Mol. Phys.
85
,
931
(
1995
).
34.
J. W.
Leachman
,
R. T.
Jacobsen
,
S. G.
Penoncello
, and
E. W.
Lemmon
,
J. Phys. Chem. Ref. Data
38
,
721
(
2009
).
35.
J. K.
Jaen
and
A. A.
Khan
,
J. Chem. Phys.
46
,
260
(
1967
).
36.
H. S.
Green
,
J. Chem. Phys.
19
,
955
(
1951
).
37.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
38.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
39.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
40.
C.
Avendaño
,
T.
Lafitte
,
C. S.
Adjiman
,
A.
Galindo
,
E. A.
Müller
, and
G.
Jackson
,
J. Phys. Chem. B
117
,
2717
(
2013
).
41.
I.
Nezbeda
and
G. A.
Iglesias-Silva
,
Mol. Phys.
69
,
767
(
1990
).
42.
M. S.
Wertheim
,
J. Math. Phys.
8
,
927
(
1967
).
43.
Ø.
Wilhelmsen
,
G.
Skaugen
,
M.
Hammer
,
P. E.
Wahl
, and
J. C.
Morud
,
Ind. Eng. Chem. Res.
52
,
2130
(
2013
).
44.
A.
Aasen
,
M.
Hammer
,
G.
Skaugen
,
J.
Jakobsen
, and
Ø.
Wilhelmsen
,
Fluid Phase Equilib.
442
,
125
(
2017
).
45.
M. L.
Michelsen
and
J. M.
Mollerup
,
Thermodynamic Models: Fundamentals & Computational Aspects
(
Tie-Line Publications
,
Holte
,
2007
).
46.
P.
Aursand
,
M. A.
Gjennestad
,
E.
Aursand
,
M.
Hammer
, and
Ø.
Wilhelmsen
,
Fluid Phase Equilib.
436
,
98
(
2017
).
47.
D.
Kahaner
,
C.
Moler
, and
S.
Nash
,
Numerical Methods and Software
(
Prentice-Hall
,
New Jersey
,
1989
).
48.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
New York
,
2002
).
49.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
New York
,
2017
).
50.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
51.
J.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon Press
,
Oxford
,
1984
).
52.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
53.
A.
Mejía
,
C.
Herdes
, and
E. A.
Müler
,
Ind. Eng. Chem. Res.
53
,
4131
(
2014
).
54.
N.
Ramrattan
,
C.
Avendaño
,
E.
Müller
, and
A.
Galindo
,
Mol. Phys.
113
,
932
(
2015
).
55.
R.
Katti
,
R.
Jacobsen
,
R.
Stewart
, and
M.
Jahangiri
,
Adv. Cryog. Eng.
31
,
1189
(
1986
).
56.
D. O.
Ortiz-Vega
, “
A new wide range equation of state for helium-4
,” Ph.D. thesis,
Texas A&M University
,
2013
.
57.
I. A.
Richardson
,
J. W.
Leachman
, and
E. W.
Lemmon
,
J. Phys. Chem. Ref. Data
43
,
013103
(
2014
).
58.
C.
Herdes
,
T. S.
Totton
, and
E. A.
Müller
,
Fluid Phase Equilib.
406
,
91
(
2015
).
59.
S.
Dufal
,
T.
Lafitte
,
A.
Galindo
,
G.
Jackson
, and
A. J.
Haslam
,
AIChE J.
61
,
2891
(
2015
).
60.
E. A.
Müller
and
G.
Jackson
,
Annu. Rev. Chem. Biomol. Eng.
5
,
405
(
2014
).
61.
M.
Vlasiuk
,
F.
Frascoli
, and
R. J.
Sadus
,
J. Chem. Phys.
145
,
104501
(
2016
).
62.
C.
Gladun
,
Cryogenics
6
,
27
(
1966
).
63.
G.
Soave
,
Chem. Eng. Sci.
27
,
1197
(
1972
).
64.
A.
Péneloux
,
E.
Rauzy
, and
R.
Fréze
,
Fluid Phase Equilib.
8
,
7
(
1982
).
65.
M.
Raju
,
D. T.
Banuti
,
P. C.
Ma
, and
M.
Ihme
,
Sci. Rep.
7
,
3027
(
2017
).
66.
G.
Jiménez-Serratos
,
C.
Herdes
,
A. J.
Haslam
,
G.
Jackson
, and
E. A.
Müller
,
Macromolecules
50
,
4840
(
2017
).
67.
F.
Jaeger
,
O. K.
Matar
, and
E. A.
Müller
,
J. Chem. Phys.
148
,
174504
(
2018
).
68.
S.
Shahruddin
,
G.
Jiménez-Serratos
,
G.
Britovsek
,
O.
Matar
, and
E. A.
Müller
,
Sci. Rep.
9
,
1002
(
2019
).
69.
A.
Aasen
,
M.
Hammer
,
Å.
Ervik
,
E. A.
Müller
, and
Ø.
Wilhelmsen
, “
Equation of state and force fields for Feynman-Hibbs-corrected Mie fluids. II. Application to mixtures of helium, neon, hydrogen and deuterium
” (unpublished).
You do not currently have access to this content.