Geopolymers, synthesized through alkaline activation of aluminosilicates, have emerged as a sustainable alternative for traditional ordinary Portland cement. In spite of the satisfactory mechanical performance and sustainability-related benefits, the large scale acceptance of geopolymers in the construction industry is still limited due to poor understanding of the composition-property relationships. Molecular simulation is a powerful tool to develop such relationships, provided that the adopted molecular structure represents the experimental data effectively. Toward this end, this paper presents a new molecular structure of sodium aluminosilicate hydrate geopolymer gels, inspired from the traditional calcium silicate hydrates gel. In contrast to the existing model—where water is uniformly distributed in the structure—we present a layered-but-disordered structure. This new structure incorporates water in the interlayer space of the aluminosilicate network. The structural features of the new proposed molecular structure are evaluated in terms of both short- and medium-range order features such as pair distribution functions, bond angle distributions, and structure factor. The structural features of the newly proposed molecular structure with interlayer water show better correlation with the experimental observations as compared to the existing traditional structure signifying an increased plausibility of the proposed structure. The proposed structure can be adopted as a starting point toward the realistic multiscale simulation-based design and development of geopolymers.

1.
J. L.
Provis
and
S. A.
Bernal
,
Annu. Rev. Mater. Res.
44
,
299
(
2014
).
2.
G.
Habert
,
J. B.
d’Espinose de Lacaillerie
, and
N.
Roussel
,
J. Cleaner Prod.
19
,
1229
(
2011
).
3.
J. L.
Provis
,
A.
Palomo
, and
C.
Shi
,
Cem. Concr. Res.
78
,
110
(
2015
).
4.
C.
Shi
,
Alkali-Activated Cements and Concretes
, 1st ed. (
CRC Press
,
2003
).
5.
J. L.
Provis
and
J. S. J.
van Deventer
,
Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM
(
Springer Science and Business Media
,
2013
).
6.
S.
Das
,
P.
Yang
,
S. S.
Singh
,
J. C. E.
Mertens
,
X.
Xiao
,
N.
Chawla
, and
N.
Neithalath
,
Cem. Concr. Res.
78
,
252
(
2015
).
7.
Y.
Zhang
,
J.
Zhang
,
J.
Jiang
,
D.
Hou
, and
J.
Zhang
,
Constr. Build. Mater.
193
,
491
(
2018
).
8.
A.
Fernández-Jiménez
,
A.
Palomo
, and
M.
Criado
,
Mater. Constr.
56
,
51
(
2006
).
9.
A.
Fernández-Jiménez
and
A.
Palomo
,
Cem. Concr. Res.
35
,
1984
(
2005
).
10.
Y.
Ma
,
J.
Hu
, and
G.
Ye
,
J. Mater. Sci.
47
,
4568
(
2012
).
11.
A. M.
Rashad
,
Constr. Build. Mater.
41
,
751
(
2013
).
12.
E.
Altan
and
S. T.
Erdoğan
,
Cem. Concr. Compos.
34
,
131
(
2012
).
13.
D.
Ravikumar
,
S.
Peethamparan
, and
N.
Neithalath
,
Cem. Concr. Compos.
32
,
399
(
2010
).
14.
A. R.
Sakulich
,
E.
Anderson
,
C.
Schauer
, and
M. W.
Barsoum
,
Constr. Build. Mater.
23
,
2951
(
2009
).
15.
K.-H.
Yang
,
J.-K.
Song
,
A. F.
Ashour
, and
E.-T.
Lee
,
Constr. Build. Mater.
22
,
1981
(
2008
).
16.
17.
J.
Somaratna
,
D.
Ravikumar
, and
N.
Neithalath
,
Cem. Concr. Res.
40
,
1688
(
2010
).
18.
F.
Puertas
,
S.
Martínez-Ramírez
,
S.
Alonso
, and
T.
Vazquez
,
Cem. Concr. Res.
30
,
1625
(
2000
).
19.
F.
Lolli
,
H.
Manzano
,
J. L.
Provis
,
M. C.
Bignozzi
, and
E.
Masoero
,
ACS Appl. Mater. Interfaces
10
,
22809
(
2018
).
20.
J. L.
Provis
,
P.
Duxson
,
J. S. J.
Van Deventer
, and
G. C.
Lukey
,
Chem. Eng. Res. Des.
83
,
853
(
2005
).
21.
T.
Yang
,
X.
Yao
,
Z.
Zhang
, and
H.
Wang
,
J. Sustainable Cem.-Based Mater.
1
,
167
(
2012
).
22.
F.
Cassagnabère
,
M.
Mouret
,
G.
Escadeillas
,
P.
Broilliard
, and
A.
Bertrand
,
Constr. Build. Mater.
24
,
1109
(
2010
).
23.
R. J.
Thomas
and
S.
Peethamparan
,
Constr. Build. Mater.
93
,
49
(
2015
).
24.
S.
Nayak
,
A.
Kizilkanat
,
N.
Neithalath
, and
S.
Das
,
J. Mater. Civ. Eng.
31
,
04019043
(
2019
).
25.
H.
Tanyildizi
and
Y.
Yonar
,
Constr. Build. Mater.
126
,
381
(
2016
).
26.
27.
V.
Sata
,
A.
Sathonsaowaphak
, and
P.
Chindaprasirt
,
Cem. Concr. Compos.
34
,
700
(
2012
).
28.
L.
Mao
,
Z.
Hu
,
J.
Xia
,
G.
Feng
,
I.
Azim
,
J.
Yang
, and
Q.
Liu
,
Compos. Struct.
207
,
176
(
2019
).
29.
Z.
Pan
and
J. G.
Sanjayan
,
Cem. Concr. Compos.
32
,
657
(
2010
).
30.
Q.
Liu
,
Y.
Qian
,
P.
Li
,
S.
Zhang
,
Z.
Wang
,
J.
Liu
,
X.
Sun
,
M.
Fulham
,
D.
Feng
,
Z.
Chen
,
S.
Song
,
W.
Lu
, and
G.
Huang
,
Acta Pharm. Sin. B
8
,
371
(
2018
).
31.
Z.
Hu
,
D.
Chen
,
S.
Wang
,
N.
Zhang
,
L.
Qin
, and
Y.
Huang
,
Mater. Sci. Eng. B
220
,
1
(
2017
).
32.
C. E.
White
,
J. L.
Provis
,
T.
Proffen
, and
J. S. J.
Van Deventer
,
J. Am. Ceram. Soc.
93
,
3486
(
2010
).
33.
C. E.
White
,
J. L.
Provis
,
A.
Llobet
,
T.
Proffen
, and
J. S. J.
van Deventer
,
J. Am. Ceram. Soc.
94
,
3532
(
2011
).
34.
C. E.
White
,
K.
Page
,
N. J.
Henson
, and
J. L.
Provis
,
Appl. Clay Sci.
73
,
17
(
2013
).
35.
C. E.
White
,
J. L.
Provis
,
B.
Bloomer
,
N. J.
Henson
, and
K.
Page
,
Phys. Chem. Chem. Phys.
15
,
8573
(
2013
).
36.
D.
Hou
,
Y.
Zhang
,
T.
Yang
,
J.
Zhang
,
H.
Pei
,
J.
Zhang
,
J.
Jiang
, and
T.
Li
,
Phys. Chem. Chem. Phys.
20
,
20695
(
2018
).
37.
M. R.
Sadat
,
S.
Bringuier
,
K.
Muralidharan
,
K.
Runge
,
A.
Asaduzzaman
, and
L.
Zhang
,
J. Non-Cryst. Solids
434
,
53
(
2016
).
38.
M. R.
Sadat
,
S.
Bringuier
,
A.
Asaduzzaman
,
K.
Muralidharan
, and
L.
Zhang
,
J. Chem. Phys.
145
,
134706
(
2016
).
39.
M. R.
Sadat
,
S.
Bringuier
,
K.
Muralidharan
,
G.
Frantziskonis
, and
L.
Zhang
,
Comput. Mater. Sci.
142
,
227
(
2018
).
40.
M.
Wang
,
B.
Wang
,
N. M. A.
Krishnan
,
Y.
Yu
,
M. M.
Smedskjaer
,
J. C.
Mauro
,
G.
Sant
, and
M.
Bauchy
,
J. Non-Cryst. Solids
455
,
70
(
2017
).
41.
X.
Li
,
W.
Song
,
K.
Yang
,
N. M. A.
Krishnan
,
B.
Wang
,
M. M.
Smedskjaer
,
J. C.
Mauro
,
G.
Sant
,
M.
Balonis
, and
M.
Bauchy
,
J. Chem. Phys.
147
,
074501
(
2017
).
42.
H.
Behrens
and
M.
Nowak
,
Contrib. Mineral. Petrol.
126
,
377
(
1997
).
43.
G. J.
Wasserburg
,
J. Geol.
96
,
363
(
1988
).
44.
Y.
Zhang
,
E. M.
Stolper
, and
G. J.
Wasserburg
,
Geochim. Cosmochim. Acta
55
,
441
(
1991
).
45.
N. M. A.
Krishnan
,
B.
Wang
,
G.
Falzone
,
Y.
Le Pape
,
N.
Neithalath
,
L.
Pilon
,
M.
Bauchy
, and
G.
Sant
,
ACS Appl. Mater. Interfaces
8
,
35621
(
2016
).
46.
R. F.
Feldman
and
P. J.
Sereda
,
Matér. Constr.
1
,
509
(
1968
).
47.
H. N.
Bordallo
,
L. P.
Aldridge
, and
A.
Desmedt
,
J. Phys. Chem. B
110
,
17966
(
2006
).
48.
R. F.
Feldman
,
Cem. Concr. Res.
2
,
123
(
1972
).
49.
R. F.
Feldman
,
Cem. Concr. Res.
1
,
285
(
1971
).
50.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
).
51.
M.
Bauchy
,
J. Chem. Phys.
141
,
024507
(
2014
).
52.
E. V.
Podryabinkin
and
A. V.
Shapeev
,
Comput. Mater. Sci.
140
,
171
(
2017
).
53.
N. M. A.
Krishnan
,
B.
Wang
,
Y.
Le Pape
,
G.
Sant
, and
M.
Bauchy
,
Phys. Rev. Mater.
1
,
053405
(
2017
).
54.
G. M.
Psofogiannakis
,
J. F.
McCleerey
,
E.
Jaramillo
, and
A. C. T.
van Duin
,
J. Phys. Chem. C
119
,
6678
(
2015
).
55.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y.
Zheng
,
Y. K.
Shin
,
C.
Junkermeier
,
R.
Engel-Herbert
,
M. J.
Janik
,
H. M.
Aktulga
,
T.
Verstraelen
,
A.
Grama
, and
A. C. T.
van Duin
,
Comput. Mater.
2
,
15011
(
2016
).
56.
Y.
Yu
,
B.
Wang
,
M.
Wang
,
G.
Sant
, and
M.
Bauchy
,
J. Non-Cryst. Solids
443
,
148
(
2016
).
57.
S. C.
Chowdhury
,
B. Z.
(Gama) Haque
, and
J. W.
Gillespie
,
J. Mater. Sci.
51
,
10139
(
2016
).
58.
M.
Bauchy
,
H.
Laubie
,
M. J. A.
Qomi
,
C. G.
Hoover
,
F.-J.
Ulm
, and
R. J.-M.
Pellenq
,
J. Non-Cryst. Solids
419
,
58
(
2015
).
59.
A. C. T.
van Duin
,
A.
Strachan
,
S.
Stewman
,
Q.
Zhang
,
X.
Xu
, and
W. A.
Goddard
,
J. Phys. Chem. A
107
,
3803
(
2003
).
60.
J.
Yeon
and
A. C. T.
van Duin
,
J. Phys. Chem. C
120
,
305
(
2016
).
61.
M. C.
Gordillo
and
C. P.
Herrero
,
J. Phys. Chem.
100
,
9098
(
1996
).
62.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
63.
T.
Oey
,
A.
Kumar
,
I.
Pignatelli
,
Y.
Yu
,
N.
Neithalath
,
J. W.
Bullard
,
M.
Bauchy
, and
G.
Sant
,
J. Am. Ceram. Soc.
100
,
5521
(
2017
).
65.
R. J.-M.
Pellenq
,
A.
Kushima
,
R.
Shahsavari
,
K. J.
Van Vliet
,
M. J.
Buehler
,
S.
Yip
, and
F.-J.
Ulm
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
16102
(
2009
).
66.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
67.
H. M.
Aktulga
,
J. C.
Fogarty
,
S. A.
Pandit
, and
A. Y.
Grama
,
Parallel Comput.
38
,
245
(
2012
).
68.
P.
Duxson
,
G. C.
Lukey
, and
J. S. J.
van Deventer
,
J. Mater. Sci.
42
,
3044
(
2007
).
69.
L.
Cormier
,
D.
Ghaleb
,
D. R.
Neuville
,
J.-M.
Delaye
, and
G.
Calas
,
J. Non-Cryst. Solids
332
,
255
(
2003
).
70.
D.
Hou
,
Z.
Li
, and
T.
Zhao
,
RSC Adv.
5
,
448
(
2015
).
71.
Y.
Yu
,
B.
Wang
,
M.
Wang
,
G.
Sant
, and
M.
Bauchy
,
Int. J. Appl. Glass Sci.
8
,
276
(
2017
).
72.
M. J. A.
Qomi
,
K. J.
Krakowiak
,
M.
Bauchy
,
K. L.
Stewart
,
R.
Shahsavari
,
D.
Jagannathan
,
D. B.
Brommer
,
A.
Baronnet
,
M. J.
Buehler
,
S.
Yip
,
F.-J.
Ulm
,
K. J.
Van Vliet
, and
R. J.-M.
Pellenq
,
Nat. Commun.
5
,
4960
(
2014
).
73.
M.
Bauchy
,
M. J. A.
Qomi
,
C.
Bichara
,
F.-J.
Ulm
, and
R. J.-M.
Pellenq
,
J. Phys. Chem. C
118
,
12485
(
2014
).
74.
M.
Bauchy
,
M. J. A.
Qomi
,
F.-J.
Ulm
, and
R. J.-M.
Pellenq
,
J. Chem. Phys.
140
,
214503
(
2014
).
75.
P. L.
Theofanis
,
A.
Jaramillo-Botero
,
W. A.
Goddard
, and
H.
Xiao
,
Phys. Rev. Lett.
108
,
045501
(
2012
).
76.
M. J.
Buehler
,
H.
Tang
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
Phys. Rev. Lett.
99
,
165502
(
2007
).
77.
N. M. A.
Krishnan
,
R.
Ravinder
,
R.
Kumar
,
Y.
Le Pape
,
G.
Sant
, and
M.
Bauchy
,
Acta Mater.
166
,
611
(
2019
).
78.
A. C.
Wright
,
J. Non-Cryst. Solids
159
,
264
(
1993
).
79.
M.
O’Keeffe
and
B. G.
Hyde
,
Acta Crystallogr. B
34
,
27
(
1978
).
80.
K.
Okhotnikov
,
B.
Stevensson
, and
M.
Edén
,
Phys. Chem. Chem. Phys.
15
,
15041
(
2013
).
81.
P.
Duxson
,
G. C.
Lukey
,
F.
Separovic
, and
J. S. J.
van Deventer
,
Ind. Eng. Chem. Res.
44
,
832
(
2005
).
82.
S.
Le Roux
and
P.
Jund
,
Comput. Mater. Sci.
49
,
70
(
2010
).
83.
W.
Loewenstein
,
Am. Mineral.
39
,
92
(
1954
).

Supplementary Material

You do not currently have access to this content.