The vibrational contributions to the average polarizability (α¯), to the second harmonic scattering (SHS) first hyperpolarizability (βSHS), and depolarization ratio (DRSHS), as well as to the third harmonic scattering (THS) second hyperpolarizability (γTHS) and depolarization ratio (DRTHS), have been evaluated for the water molecule using the Bishop and Kirtman perturbative theory approach, in combination with finite differentiation techniques to evaluate the higher-order derivatives. From a hierarchy of coupled cluster techniques and extended atomic basis sets, the CCSD/d-aug-cc-pVTZ level has been selected to assess the importance of the zero-point vibrational average (ZPVA) contributions and of the pure vibrational contributions with respect to their electronic counterparts. This is the first investigation demonstrating electronic and vibrational SHS, and THS responses can be computed for small molecules, with the perspective of performing comparisons with recent experimental data [Van Steerteghem et al., Anal. Chem. 89, 2964 (2017) and V. Rodriguez, J. Phys. Chem. C 121, 8510 (2017)]. Numerical results on the water molecule highlight that (i) the vibrational contributions to the dynamic α¯, βSHS, and γTHS are small but non negligible; (ii) they amount to 3%, 10%, and 4% at the typical 1064 nm wavelength, respectively; (iii) the mechanical anharmonicity term dominates the ZPVA contribution; (iv) the double harmonic terms dominate the pure vibrational contributions; (v) the stretching vibrations provide the largest contributions to the dynamic (hyper)polarizabilities; and (vi) these conclusions are strongly impacted in the static limit where the vibrational contributions are much larger, in particular the double harmonic pure vibrational terms, and even more in the case of the first hyperpolarizability.

1.
G. H.
Wagnière
,
Linear and Nonlinear Optical Properties of Molecules
(
Helvetica Chimica Acta
,
Basel
,
1993
), oCLC: 246731393.
2.
C.
Bosshard
,
Organic Nonlinear Optical Materials
(
Gordon and Breach
,
Basel, Switzerland
,
1995
), oCLC: 33261662.
3.
M. G.
Papadopoulos
,
A. J.
Sadlej
, and
J.
Leszczynski
,
Non-Linear Optical Properties of Matter from Molecules to Condensed Phases
(
Springer
,
Dordrecht
,
2006
), oCLC: 762167749.
4.
T.
Verbiest
,
K.
Clays
, and
V.
Rodriguez
,
Second-Order Nonlinear Optical Characterization Techniques: An Introduction
(
Taylor & Francis
,
2009
).
5.
K.
Clays
and
A.
Persoons
,
Phys. Rev. Lett.
66
,
2980
(
1991
).
6.
N.
Van Steerteghem
,
K.
Clays
,
T.
Verbiest
, and
S.
Van Cleuvenbergen
,
Anal. Chem.
89
,
2964
(
2017
).
7.
V.
Rodriguez
,
J. Phys. Chem. C
121
,
8510
(
2017
).
8.
S. R.
Marder
,
L.-T.
Cheng
,
B. G.
Tiemann
,
A. C.
Friedli
,
M.
Blanchard-Desce
,
J. W.
Perry
, and
J.
Skindhøj
,
Science
263
,
511
(
1994
).
9.
J.
Zyss
and
I.
Ledoux
,
Chem. Rev.
94
,
77
(
1994
).
10.
J. L.
Brédas
,
C.
Adant
,
P.
Tackx
,
A.
Persoons
, and
B. M.
Pierce
,
Chem. Rev.
94
,
243
(
1994
).
11.
D. R.
Kanis
,
M. A.
Ratner
, and
T. J.
Marks
,
Chem. Rev.
94
,
195
(
1994
).
12.
X.
Hu
,
D.
Xiao
,
S.
Keinan
,
I.
Asselberghs
,
M. J.
Therien
,
K.
Clays
,
W.
Yang
, and
D. N.
Beratan
,
J. Phys. Chem. C
114
,
2349
(
2010
).
13.
N. H.
List
,
R.
Zaleśny
,
N. A.
Murugan
,
J.
Kongsted
,
W.
Bartkowiak
, and
H.
Ågren
,
J. Chem. Theory Comput.
11
,
4182
(
2015
).
14.
D. P.
Shelton
and
J. E.
Rice
,
Chem. Rev.
94
,
3
(
1994
).
15.
T.
Kobayashi
,
K.
Sasagane
,
F.
Aiga
, and
K.
Yamaguchi
,
J. Chem. Phys.
111
,
842
(
1999
).
16.
G.
Maroulis
,
Chem. Phys. Lett.
442
,
265
(
2007
).
17.
R. J.
Wheatley
,
J. Comput. Chem.
29
,
445
(
2008
).
18.
P.
Norman
,
Phys. Chem. Chem. Phys.
13
,
20519
(
2011
).
19.
J. P.
Coe
and
M. J.
Paterson
,
J. Chem. Phys.
141
,
124118
(
2014
).
20.
D. M.
Bishop
,
Int. Rev. Phys. Chem.
13
,
21
(
1994
).
21.
B.
Champagne
and
D. M.
Bishop
,
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
2003
), pp.
41
92
.
22.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
120
,
3787
(
2004
).
23.
T.
Seidler
,
K.
Stadnicka
, and
B.
Champagne
,
J. Chem. Phys.
139
,
114105
(
2013
).
24.
E.
Mishina
,
Y.
Miyakita
,
Q.-K.
Yu
,
S.
Nakabayashi
, and
H.
Sakaguchi
,
J. Chem. Phys.
117
,
4016
(
2002
).
25.
C.
Tonnelé
,
K.
Pielak
,
J.
Deviers
,
L.
Muccioli
,
B.
Champagne
, and
F.
Castet
,
Phys. Chem. Chem. Phys.
20
,
21590
(
2018
).
26.
B. E. K.
Dalskov
,
H. J. A.
Jensen
, and
J.
Oddershede
,
Mol. Phys.
90
,
3
(
1997
).
27.
M.
de Wergifosse
,
F.
Castet
, and
B.
Champagne
,
J. Chem. Phys.
142
,
194102
(
2015
).
28.
R.
Zaleśny
,
I. W.
Bulik
,
W.
Bartkowiak
,
J. M.
Luis
,
A.
Avramopoulos
,
M. G.
Papadopoulos
, and
P.
Krawczyk
,
J. Chem. Phys.
133
,
244308
(
2010
).
29.
A. S.
Dutra
,
M. A.
Castro
,
T. L.
Fonseca
,
E. E.
Fileti
, and
S.
Canuto
,
J. Chem. Phys.
132
,
034307
(
2010
).
30.
V.
Lacivita
,
M.
Rérat
,
B.
Kirtman
,
R.
Orlando
,
M.
Ferrabone
, and
R.
Dovesi
,
J. Chem. Phys.
137
,
014103
(
2012
).
31.
I. W.
Bulik
,
R.
Zaleśny
,
W.
Bartkowiak
,
J. M.
Luis
,
B.
Kirtman
,
G. E.
Scuseria
,
A.
Avramopoulos
,
H.
Reis
, and
M. G.
Papadopoulos
,
J. Comput. Chem.
34
,
1775
(
2013
).
32.
B.
Gao
,
M.
Ringholm
,
R.
Bast
,
K.
Ruud
,
A. J.
Thorvaldsen
, and
M.
Jaszuński
,
J. Phys. Chem. A
118
,
748
(
2014
).
33.
E. S.
Naves
,
M. A.
Castro
, and
T. L.
Fonseca
,
Chem. Phys. Lett.
608
,
130
(
2014
).
34.
R.
Zaleśny
,
A.
Baranowska-Łączkowska
,
M.
Medveď
, and
J. M.
Luis
,
J. Chem. Theory Comput.
11
,
4119
(
2015
).
35.
E. S.
Naves
,
M. A.
Castro
, and
T. L.
Fonseca
,
J. Chem. Phys.
134
,
054315
(
2011
).
36.
E. S.
Naves
,
M. A.
Castro
, and
T. L.
Fonseca
,
J. Chem. Phys.
136
,
014303
(
2012
).
37.
R.
Zaleśny
,
M.
Garcia-Borràs
,
R. W.
Góra
,
M.
Medved’
, and
J. M.
Luis
,
Phys. Chem. Chem. Phys.
18
,
22467
(
2016
).
38.
S.
Marques
,
M. A.
Castro
,
S. A.
Leão
, and
T. L.
Fonseca
,
J. Phys. Chem. A
122
,
7402
(
2018
).
39.
M.
Garcia-Borràs
,
M.
Solà
,
J. M.
Luis
, and
B.
Kirtman
,
J. Chem. Theory Comput.
8
,
2688
(
2012
).
40.
L.
Feitoza
,
M. A.
Castro
,
S. A.
Leão
, and
T. L.
Fonseca
,
J. Chem. Phys.
146
,
144309
(
2017
).
41.
S.
Casassa
,
J.
Baima
,
A.
Mahmoud
, and
B.
Kirtman
,
J. Chem. Phys.
140
,
224702
(
2014
).
42.
L. Z.
Kang
,
T.
Inerbaev
,
B.
Kirtman
, and
F. L.
Gu
,
Theor. Chem. Acc.
130
,
727
(
2011
).
43.
A.
Avramopoulos
,
H.
Reis
,
N.
Otero
,
P.
Karamanis
,
C.
Pouchan
, and
M. G.
Papadopoulos
,
J. Phys. Chem. C
120
,
9419
(
2016
).
44.
M.
Torrent-Sucarrat
,
S.
Navarro
,
E.
Marcos
,
J. M.
Anglada
, and
J. M.
Luis
,
J. Phys. Chem. C
121
,
19348
(
2017
).
45.
D. M.
Bishop
and
B.
Lam
,
Phys. Rev. A
37
,
464
(
1988
).
46.
H.
Sekino
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
3022
(
1993
).
47.
M.
Stähelin
,
C. R.
Moylan
,
D. M.
Burland
,
A.
Willetts
,
J. E.
Rice
,
D. P.
Shelton
, and
E. A.
Donley
,
J. Chem. Phys.
98
,
5595
(
1993
).
48.
A.
Rizzo
,
S.
Coriani
,
B.
Fernández
, and
O.
Christiansen
,
Phys. Chem. Chem. Phys.
4
,
2884
(
2002
).
49.
M.
Pecul
,
F.
Pawłowski
,
P.
Jørgensen
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
124
,
114101
(
2006
).
50.
P.
Beaujean
and
B.
Champagne
,
J. Chem. Phys.
145
,
044311
(
2016
).
51.
D. M.
Bishop
,
Rev. Mod. Phys.
62
,
343
(
1990
).
52.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
).
53.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
97
,
5255
(
1992
).
54.
D. M.
Bishop
,
J. M.
Luis
, and
B.
Kirtman
,
J. Chem. Phys.
108
,
10013
(
1998
).
55.
P.
Norman
,
Y.
Luo
, and
H.
Ågren
,
J. Chem. Phys.
109
,
3580
(
1998
).
56.
O.
Quinet
and
B.
Champagne
,
J. Chem. Phys.
109
,
10594
(
1998
).
57.
D. M.
Bishop
,
F. L.
Gu
, and
S. M.
Cybulski
,
J. Chem. Phys.
109
,
8407
(
1998
).
58.
Q.
Quinet
and
B.
Champagne
,
New Trends in Quantum Systems in Chemistry and Physics
(
Kluwer Academic Publishers
,
Dordrecht
,
2002
), Vol. 6, pp.
375
392
.
59.
M.
Torrent-Sucarrat
,
J. M.
Luis
,
M.
Duran
, and
M.
Solà
,
J. Chem. Phys.
120
,
10914
(
2004
).
60.
M.
Torrent-Sucarrat
,
J. M.
Luis
, and
B.
Kirtman
,
J. Chem. Phys.
122
,
204108
(
2005
).
61.
J. M.
Luis
,
H.
Reis
,
M.
Papadopoulos
, and
B.
Kirtman
,
J. Chem. Phys.
131
,
034116
(
2009
).
62.
O.
Loboda
,
R.
Zaleśny
,
A.
Avramopoulos
,
J.-M.
Luis
,
B.
Kirtman
,
N.
Tagmatarchis
,
H.
Reis
, and
M. G.
Papadopoulos
,
J. Phys. Chem. A
113
,
1159
(
2009
).
63.
B.
Skwara
,
R. W.
Góra
,
R.
Zaleśny
,
P.
Lipkowski
,
W.
Bartkowiak
,
H.
Reis
,
M. G.
Papadopoulos
,
J. M.
Luis
, and
B.
Kirtman
,
J. Phys. Chem. A
115
,
10370
(
2011
).
64.
A.
Avramopoulos
,
H.
Reis
,
J. M.
Luis
, and
M. G.
Papadopoulos
,
J. Comput. Chem.
34
,
1446
(
2013
).
65.
B.
Orr
and
J.
Ward
,
Mol. Phys.
20
,
513
(
1971
).
66.
B.
Kirtman
and
J. M.
Luis
,
Int. J. Quantum Chem.
111
,
839
(
2011
).
67.
R.
Bersohn
,
Y.-H.
Pao
, and
H. L.
Frisch
,
J. Chem. Phys.
45
,
3184
(
1966
).
68.
D. L.
Andrews
and
P.
Allcock
,
Optical Harmonics in Molecular Systems
(
Wiley-VCH
,
Weinheim
,
2002
), oCLC: ocm48468465.
69.
J. S.
Ford
and
D. L.
Andrews
,
J. Phys. Chem. A
122
,
563
(
2018
).
70.
P.
Beaujean
and
B.
Champagne
,
Theor. Chem. Acc.
137
,
50
(
2018
).
71.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
72.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
73.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
74.
K.
Hald
,
A.
Halkier
,
P.
Jørgensen
, and
S.
Coriani
,
J. Chem. Phys.
117
,
9983
(
2002
).
75.
C.
Hättig
,
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
269
,
428
(
1997
).
76.
O.
Christiansen
,
J.
Gauss
, and
J. F.
Stanton
,
Chem. Phys. Lett.
305
,
147
(
1999
).
77.
C.
Hättig
,
Chem. Phys. Lett.
296
,
245
(
1998
).
78.
C.
Hättig
and
P.
Jørgensen
,
Adv. Quantum Chem.
35
,
111
(
1999
).
79.
L. F.
Richardson
and
J. A.
Gaunt
,
Philos. Trans. R. Soc., A
226
,
299
(
1927
).
80.
J. E.
Bloor
,
J. Mol. Struct.: THEOCHEM
234
,
173
(
1991
).
81.
A. A. K.
Mohammed
,
P. A.
Limacher
, and
B.
Champagne
,
J. Comput. Chem.
34
,
1497
(
2013
).
82.
M.
de Wergifosse
,
V.
Liégeois
, and
B.
Champagne
,
Int. J. Quantum Chem.
114
,
900
(
2014
).
83.
M. E.
Wieser
,
Pure Appl. Chem.
78
,
2051
(
2006
).
84.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. Aa.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
(
2014
).
85.
G.
Maroulis
,
Chem. Phys. Lett.
289
,
403
(
1998
).
86.
T.
Kobayashi
,
K.
Sasagane
,
F.
Aiga
, and
K.
Yamaguchi
,
J. Chem. Phys.
110
,
11720
(
1999
).
87.
D.
Spelsberg
and
W.
Meyer
,
J. Chem. Phys.
108
,
1532
(
1998
).
88.
D.
Bokhan
and
R. J.
Bartlett
,
J. Chem. Phys.
127
,
174102
(
2007
).
89.
A. J.
Russell
and
M. A.
Spackman
,
Mol. Phys.
84
,
1239
(
1995
).
90.
J. M.
Luis
,
M.
Duran
,
J. L.
Andrés
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
111
,
875
(
1999
).
91.
O.
Quinet
,
B.
Champagne
, and
B.
Kirtman
,
J. Comput. Chem.
22
,
1920
(
2001
).
92.
O.
Quinet
,
B.
Kirtman
, and
B.
Champagne
,
J. Chem. Phys.
118
,
505
(
2003
).
93.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
94.
M. J.
Cohen
,
A.
Willetts
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
100
,
4467
(
1994
).
95.
J.
Kongsted
and
O.
Christiansen
,
J. Chem. Phys.
125
,
124108
(
2006
).
96.
O.
Christiansen
,
J.
Kongsted
,
M. J.
Paterson
, and
J. M.
Luis
,
J. Chem. Phys.
125
,
214309
(
2006
).
97.
M. B.
Hansen
,
O.
Christiansen
, and
C.
Hättig
,
J. Chem. Phys.
131
,
154101
(
2009
).
98.
M. B.
Hansen
and
O.
Christiansen
,
J. Chem. Phys.
135
,
154107
(
2011
).
99.
D. M.
Bishop
,
B.
Kirtman
,
H. A.
Kurtz
, and
J. E.
Rice
,
J. Chem. Phys.
98
,
8024
(
1993
).
100.
D. M.
Bishop
and
E. K.
Dalskov
,
J. Chem. Phys.
104
,
1004
(
1996
).
101.
H.
Reis
,
S.
Raptis
, and
M.
Papadopoulos
,
Chem. Phys.
263
,
301
(
2001
).
102.
A. J.
Thorvaldsen
,
K.
Ruud
, and
M.
Jaszuński
,
J. Phys. Chem. A
112
,
11942
(
2008
).
103.
G.
Katzer
, Character Tables, http://gernot-katzers-spice-pages.com/character_tables/; accessed
11 January 2019
.

Supplementary Material

You do not currently have access to this content.