A three-point velocity correlation function ⟨v(t1 + t2)v2(t1)v(0)⟩ is introduced for a better understanding of the recent 2D-Raman-THz spectroscopy of the intermolecular degrees of freedoms of water and aqueous salt solutions. This correlation function reveals echoes in the presence of inhomogeneous broadening, which are coined “velocity echoes.” In analogy to the well-known two-point velocity correlation function ⟨v(t)v(0)⟩, it reflects the density of states (DOS) of the system under study without having to amend them with transition dipoles and transition polarizabilities. The correlation function can be calculated from equilibrium trajectories and converges extremely quickly. After deriving the theory, the information content of the three-point velocity correlation function is first tested based on a simple harmonic oscillator model with Langevin dynamics. Subsequently, velocity echoes of TIP4P/2005 water are calculated as a function of temperature, covering ambient conditions, the supercooled regime and amorphous ice, as well as upon addition of various salts. The experimentally observed trends can be reproduced qualitatively with the help of computationally very inexpensive molecular dynamics simulations.

1.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
2.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
3.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Nature
510
,
385
(
2014
).
4.
P.
Hamm
and
J.
Savolainen
,
J. Chem. Phys.
136
,
094516
(
2012
).
5.
J.
Savolainen
,
S.
Ahmed
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
20402
(
2013
).
6.
A.
Shalit
,
S.
Ahmed
,
J.
Savolainen
, and
P.
Hamm
,
Nat. Chem.
9
,
273
(
2017
).
7.
A.
Berger
,
G.
Ciardi
,
D.
Sidler
,
P.
Hamm
, and
A.
Shalit
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
2458
(
2019
).
9.
A.
Tokmakoff
and
M. D.
Fayer
,
J. Chem. Phys.
103
,
2810
(
1995
).
10.
P.
Hamm
,
M. H.
Lim
, and
R. M.
Hochstrasser
,
Phys. Rev. Lett.
81
,
5326
(
1998
).
11.
W. H.
Hesselink
and
D. A.
Wiersma
,
J. Chem. Phys.
73
,
648
(
1980
).
12.
T.
Joo
,
Y.
Jia
,
J.-Y.
Yu
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Phys. Chem.
104
,
6089
(
1996
).
13.
D.
Sidler
and
P.
Hamm
,
J. Chem. Phys.
150
,
044202
(
2019
).
14.
P.
Hamm
,
J. Chem. Phys.
141
,
184201
(
2014
).
15.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
,
5395
(
2013
).
16.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
074512
(
2006
).
17.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Phys. Chem. Lett.
7
,
4147
(
2016
).
18.
G. S.
Grest
,
S. R.
Nagel
, and
A.
Rahman
,
Solid State Commun.
36
,
875
(
1980
).
19.
O. M.
Becker
and
M.
Karplus
,
Phys. Rev. Lett.
70
,
3514
(
1993
).
20.
D.
Xu
,
K.
Schulten
,
O. M.
Becker
, and
M.
Karplus
,
J. Chem. Phys.
103
,
3112
(
1995
).
21.
D.
Xu
and
K.
Schulten
,
J. Chem. Phys.
103
,
3124
(
1995
).
22.
S.
Saito
and
I.
Ohmine
,
Phys. Rev. Lett.
88
,
207401
(
2002
).
23.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
24.
M.-C.
Bellissent-Funel
and
J.
Teixeira
,
J. Mol. Struct.
250
,
213
(
1991
).
25.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
26.
T.
Steffen
,
J. T.
Fourkas
, and
K.
Duppen
,
J. Chem. Phys.
105
,
7364
(
1996
).
27.
T.
Steffen
and
K.
Duppen
,
Chem. Phys.
233
,
267
(
1998
).
28.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
108
,
240
(
1998
).
29.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
107
,
2267
(
1997
).
30.
A.
Ma
and
R. M.
Stratt
,
Phys. Rev. Lett.
85
,
1004
(
2000
).
31.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
,
307
(
2000
).
32.
K.
Okumura
and
Y.
Tanimura
,
J. Phys. Chem. A
107
,
8092
(
2003
).
33.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
125
,
084506
(
2006
).
34.
Y.
Nagata
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Chem. Phys.
124
,
194504
(
2006
).
35.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
36.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
111
,
3105
(
1999
).
37.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
113
,
771
(
2000
).
38.
L. J.
Kaufman
,
J.
Heo
,
L. D.
Ziegler
, and
G. R.
Fleming
,
Phys. Rev. Lett.
88
,
207402
(
2002
).
39.
O.
Golonzka
,
N.
Demirdöven
,
M.
Khalil
, and
A.
Tokmakoff
,
J. Chem. Phys.
113
,
9893
(
2000
).
40.
K. J.
Kubarych
,
C. J.
Milne
, and
R. J. D.
Miller
,
Int. Rev. Phys. Chem.
22
,
497
(
2003
).
41.
Y. L.
Li
,
L.
Huang
,
R. J. D.
Miller
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Chem. Phys.
128
,
234507
(
2008
).
42.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
6857
(
2016
).
43.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
,
J. Phys. Chem. Lett.
8
,
4640
(
2017
).
44.
M.
Cho
,
J. Chem. Phys.
111
,
4140
(
1999
).
45.
P.
Hamm
and
A.
Shalit
,
J. Chem. Phys.
146
,
130901
(
2017
).
46.
R. F.
Loring
and
S.
Mukamel
,
J. Chem. Phys.
83
,
2116
(
1985
).
47.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
48.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
49.
S.
Roy
,
M. S.
Pshenichnikov
, and
T. L.
Jansen
,
J. Phys. Chem. B
115
,
5431
(
2011
).
50.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1992
).
51.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
52.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
53.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
54.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
55.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
56.
M. J.
Robertson
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Chem. Theory Comput.
11
,
3499
(
2015
).
57.
M.
Sharma
,
R.
Resta
, and
R.
Car
,
Phys. Rev. Lett.
95
,
187401
(
2005
).
58.
H.
Torii
,
J. Chem. Theory Comput.
10
,
1219
(
2014
).
59.
D.
Sidler
,
M.
Meuwly
, and
P.
Hamm
,
J. Chem. Phys.
148
,
244504
(
2018
).
60.
D. C.
Douglass
,
J. Chem. Phys.
35
,
81
(
1961
).
61.
J. B.
Asbury
,
T.
Steinel
,
K.
Kwak
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Chem. Phys.
121
,
12431
(
2004
).
62.
S.
Yeremenko
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
369
,
107
(
2003
).
63.
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Nature
434
,
199
(
2005
).
64.
J. D.
Eaves
,
J. J.
Loparo
,
C. J.
Fecko
,
S. T.
Roberts
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
13019
(
2005
).
65.
F.
Perakis
,
S.
Widmer
, and
P.
Hamm
,
J. Chem. Phys.
134
,
204505
(
2011
).
66.
J. S.
Kim
,
Z.
Wu
,
A. R.
Morrow
,
A.
Yethiraj
, and
A.
Yethiraj
,
J. Phys. Chem. B
116
,
12007
(
2012
).
67.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
You do not currently have access to this content.