The delocalization of excitonic states and the interstate quantum coherence are of great importance in understanding fundamental mechanisms in exciton dynamics such as singlet fission. The accurate theoretical description on this key component requires dynamic simulations to be performed at the molecular level in a nonadiabatic framework. Here, we apply the recently developed nonadiabatic active state trajectory method to simulate fission dynamics in tetracene clusters of up to 10 monomers. It is shown that a global view of the topology of quantum coherence in terms of molecular details such as packing configurations, spatial delocalization of states, and the topology of coherent regime plays an important role in modulating fission dynamics, which suggests a new focus for nonadiabatic control of exciton dynamics and provides valuable dynamical information and physical insights for artificial design.

1.
M. B.
Smith
and
J.
Michl
, “
Singlet fission
,”
Chem. Rev.
110
,
6891
6936
(
2010
).
2.
M. B.
Smith
and
J.
Michl
, “
Recent advances in singlet fission
,”
Annu. Rev. Phys. Chem.
64
,
361
386
(
2013
).
3.
D.
Casanova
, “
Theoretical modeling of singlet fission
,”
Chem. Rev.
118
,
7164
(
2018
).
4.
K.
Miyata
,
F. S.
Conrad-Burton
,
F. L.
Geyer
, and
X.-Y.
Zhu
, “
Triplet pair states in singlet fission
,”
Chem. Rev.
119
,
4261
4292
(
2019
).
5.
C.
Jundt
,
G.
Klien
,
B.
Sipp
,
J.
Le Moigne
,
M.
Joucla
, and
A. A.
Villaeys
, “
Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy
,”
Chem. Phys. Lett.
241
,
84
88
(
1995
).
6.
M. W. B.
Wilson
,
A.
Rao
,
J.
Clark
,
R. S. S.
Kumar
,
D.
Brida
,
G.
Cerullo
, and
R. H.
Friend
, “
Ultrafast dynamics of exciton fission in polycrystalline pentacene
,”
J. Am. Chem. Soc.
133
,
11830
11833
(
2011
).
7.
W.-L.
Chan
,
M.
Ligges
,
A.
Jailaubekov
,
L.
Kaake
,
L.
MiajaAvila
, and
X.-Y.
Zhu
, “
Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer
,”
Science
334
,
1541
1545
(
2011
).
8.
J. J.
Burdett
,
A. M.
M€uller
,
D.
Gosztola
, and
C. J.
Bardeen
, “
Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission
,”
J. Chem. Phys.
133
,
144506
(
2010
).
9.
W.-L.
Chan
,
M.
Ligges
, and
X.-Y.
Zhu
, “
The energy barrier in singlet in singlet fission can be overcome by coherent coupling and entropic gain
,”
Nat. Chem.
4
,
840
845
(
2012
).
10.
W.-L.
Chan
,
T. C.
Berkelbach
,
M. R.
Provorse
,
N. R.
Monahan
,
J. R.
Tritsch
,
M. S.
Hybertsen
,
D. R.
Reichman
,
J.
Gao
, and
X.-Y.
Zhu
, “
The quantum coherent mechanism for singlet fission: Experiment and theory
,”
Acc. Chem. Res.
46
,
1321
1329
(
2013
).
11.
P. M.
Zimmerman
,
F.
Bell
,
D.
Casanova
, and
M.
Head-Gordon
, “
Mechanism for singlet fission in pentacene and tetracene: From single exciton to two triplets
,”
J. Am. Chem. Soc.
133
,
19944
19952
(
2011
).
12.
D.
Casanova
, “
Electronic structure study of singlet fission in tetracene derivatives
,”
J. Chem. Theory Comput.
10
,
324
334
(
2014
).
13.
A. J.
Musser
,
M.
Liebel
,
C.
Schnedermann
,
T.
Wende
,
T. B.
Kehoe
,
A.
Rao
, and
P.
Kukura
, “
Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission
,”
Nat. Phys.
11
,
352
357
(
2015
).
14.
E. C.
Greyson
,
J.
Vura-Weis
,
J.
Michl
, and
M. A.
Ratner
, “
Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer
,”
J. Phys. Chem. B
114
,
14168
14177
(
2010
).
15.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange
,”
J. Chem. Phys.
138
,
114103
(
2013
).
16.
S.
Sharifzadeh
,
P.
Darancet
,
L.
Kronik
, and
J. B.
Neaton
, “
Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene
,”
J. Phys. Chem. Lett.
4
,
2197
2201
(
2013
).
17.
N. R.
Monahan
,
D.
Sun
,
H.
Tamura
,
K. W.
Williams
,
B.
Xu
,
Y.
Zhong
,
B.
Kumar
,
C.
Nuckolls
,
A. R.
Harutyunyan
,
G.
Chen
,
H. L.
Dai
,
D.
Beljonne
,
Y.
Rao
, and
X. Y.
Zhu
, “
Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene
,”
Nat. Chem.
9
,
341
346
(
2017
).
18.
K.
Miyata
,
Y.
Kurashige
,
K.
Watanabe
,
T.
Sugimoto
,
S.
Takahashi
,
S.
Tanaka
,
J.
Takeya
,
T.
Yanai
, and
Y.
Matsumoto
, “
Coherent singlet fission activated by symmetry breaking
,”
Nat. Chem.
9
,
983
989
(
2017
).
19.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
20.
H. L.
Stern
,
A.
Cheminal
,
S. R.
Yost
,
K.
Broch
,
S. L.
Bayliss
,
K.
Chen
,
M.
Tabachnyk
,
K.
Thorley
,
N.
Greenham
,
J. M.
Hodgkiss
,
J.
Anthony
,
M.
Head-Gordon
,
A. J.
Musser
,
A.
Rao
, and
R. H.
Friend
, “
Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission
,”
Nat. Chem.
9
,
1205
1212
(
2017
).
21.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. III. How vibronic coupling and thermodynamics promote rapid triplet generation in pentacene crystals
,”
J. Chem. Phys.
148
,
244701
(
2018
).
22.
C. J.
Bardeen
, “
The structure and dynamics of molecular excitons
,”
Annu. Rev. Phys. Chem.
65
,
127
148
(
2014
).
23.
R. D.
Pensack
,
A. J.
Tilley
,
S. R.
Parkin
,
T. S.
Lee
,
M. M.
Payne
,
D.
Gao
,
A. A.
Jahnke
,
D. G.
Oblinsky
,
P.-F.
Li
,
J. E.
Anthony
 et al., “
Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives
,”
J. Am. Chem. Soc.
137
,
6790
6803
(
2015
).
24.
Y.
Wan
,
G. P.
Wiederrecht
,
R. D.
Schaller
,
J. C.
Johnson
, and
L.
Huang
, “
Transport of spin-entangled triplet excitons generated by singlet fission
,”
J. Phys. Chem. Lett.
9
,
6731
6738
(
2018
).
25.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Microscopic theory of singlet exciton fission. III. Crystalline pentacene
,”
J. Chem. Phys.
141
,
074705
(
2014
).
26.
G.
Tao
, “
Electronically nonadiabatic dynamics in singlet fission: A quasi-classical trajectory simulation
,”
J. Phys. Chem. C
118
,
17299
17305
(
2014
).
27.
G.
Tao
, “
Bath effect in singlet fission dynamics
,”
J. Phys. Chem. C
118
,
27258
(
2014
).
28.
H.
Zang
,
Y.
Ke
,
Y.
Zhao
, and
W.
Liang
, “
Effects of charge transfer state and exciton migration on singlet fission dynamics in organic aggregates
,”
J. Phys. Chem. C
120
,
13351
13359
(
2016
).
29.
H.
Zang
,
Y.
Zhao
, and
W.
Liang
, “
Quantum interference in singlet fission: J- and H-aggregate behavior
,”
J. Phys. Chem. Lett.
8
,
5105
5112
(
2017
).
30.
M.
Nakano
,
S.
Ito
,
T.
Nagami
,
Y.
Kitagawa
, and
T.
Kubo
, “
Quantum master equation approach to singlet fission dynamics of realistic/artificial pentacene dimer models: Relative relaxation factor analysis
,”
J. Phys. Chem. C
120
,
22803
22815
(
2016
).
31.
M.
Nakano
,
T.
Nagami
,
T.
Tonami
,
K.
Okada
,
S.
Ito
,
R.
Kishi
,
Y.
Kitagawa
, and
T.
Kubo
, “
Quantum, master equation approach to singlet fission dynamics in pentacene linear aggregate models: Size dependences of excitonic coupling effects
,”
J. Comput. Chem.
40
,
89
104
(
2019
).
32.
Y.
Fujihashi
and
A.
Ishizaki
, “
Fluctuations in electronic energy affecting singlet fission dynamics and mixing with charge-transfer state: Quantum dynamics study
,”
J. Phys. Chem. Lett.
7
,
363
369
(
2016
).
33.
H.
Tamura
,
M.
Huix-Rotllant
,
I.
Burghardt
,
Y.
Olivier
, and
D.
Beljonne
, “
First-principles quantum dynamics of singlet fission: Coherent versus thermally activated mechanisms governed by molecular π stacking
,”
Phys. Rev. Lett.
115
,
107401
(
2015
).
34.
G.
Tao
, “
Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation
,”
J. Chem. Phys.
147
,
044107
(
2017
).
35.
G.
Tao
, “
Coherence-controlled nonadiabatic dynamics via state-space decomposition: A consistent way to incorporate Ehrenfest and Born–Oppenheimer-like treatments of nuclear motion
,”
J. Phys. Chem. Lett.
7
,
4335
4339
(
2016
).
36.
G.
Tao
and
N.
Shen
, “
Mapping state space to quasiclassical trajectory dynamics in coherence-controlled nonadiabatic simulations for condensed phase problems
,”
J. Phys. Chem. A
121
(
8
),
1734
(
2017
).
37.
A.
Ishizaki
and
G. R.
Fleming
, “
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
17260
(
2009
).
38.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations
,”
J. Phys. Chem. A
117
,
7190
7194
(
2013
).
39.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
40.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasiclassical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
(
2016
).
41.
H.
Wang
,
M.
Thoss
,
K.
Sorge
,
R.
Gelabert
,
X.
Gimenez
, and
W. H.
Miller
, “
Semiclassical description of quantum coherence effects and their quenching: A forward–backward initial value representation study
,”
J. Chem. Phys.
114
,
2562
2571
(
2001
).
42.
A.
Cembran
,
L.
Song
,
Y.
Mo
, and
J.
Gao
, “
Block-localized density functional theory (BLDFT), diabatic coupling, and its use in valence bond theory for representing reactive potential energy surfaces
,”
J. Chem. Theory Comput.
5
,
2702
2716
(
2009
).
43.
H. D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
You do not currently have access to this content.