The transformation of liquid water into solid ice is arguably the most important phase transition on Earth. A key aspect of such transformation is the speed with which ice grows once it is nucleated. There are contradictory experimental results as to whether the ice growth rate shows a maximum on cooling. Previous simulation results point to the existence of such a maximum. However, simulations were performed at constant temperature with the aid of a thermostat that dissipates the heat released at the ice-water interface unrealistically fast. Here, we perform simulations of ice growth without any thermostat. Large systems are required to perform these simulations at constant overall thermodynamic conditions (pressure and temperature). We obtain the same growth rate as in previous thermostatted simulations. This implies that the dynamics of ice growth is not affected by heat dissipation. Our results strongly support the experiments predicting the existence of a maximum in the ice growth rate. By using the Wilson-Frenkel kinetic theory, we argue that such maximum is due to a competition between an increasing crystallization thermodynamic driving force and a decreasing molecular mobility on cooling.

1.
G.
Fraux
and
J. P. K.
Doye
, “
Note: Heterogeneous ice nucleation on silver-iodide-like surfaces
,”
J. Chem. Phys.
141
,
216101
(
2014
).
2.
B. J.
Murray
,
T. W.
Wilson
,
S.
Dobbie
,
Z.
Cui
,
S. M.
Al-Jumur
,
O.
Möhler
,
M.
Schnaiter
,
R.
Wagner
,
S.
Benz
,
M.
Niemand
 et al, “
Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions
,”
Nat. Geosci.
3
,
233
(
2010
).
3.
C.
Hoose
,
J. E.
Kristjánsson
,
J.-P.
Chen
, and
A.
Hazra
, “
A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model
,”
J. Atmos. Sci.
67
,
2483
2503
(
2010
).
4.
A.
Kiselev
,
F.
Bachmann
,
P.
Pedevilla
,
S. J.
Cox
,
A.
Michaelides
,
D.
Gerthsen
, and
T.
Leisner
, “
Active sites in heterogeneous ice nucleation: The example of K-rich feldspars
,”
Science
355
,
367
371
(
2017
).
5.
A. J. B.
di Lorenzo
,
M. A.
Carignano
, and
R. G.
Pereyra
, “
A statistical study of heterogeneous nucleation of ice by molecular dynamics
,”
Chem. Phys. Lett.
635
,
45
49
(
2015
).
6.
B. J.
Murray
,
S. L.
Broadley
,
T. W.
Wilson
,
S. J.
Bull
,
R. H.
Wills
,
H. K.
Christenson
, and
E. J.
Murray
, “
Kinetics of the homogeneous freezing of water
,”
Phys. Chem. Chem. Phys.
12
,
10380
(
2010
).
7.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
Homogeneous ice nucleation evaluated for several water models
,”
J. Chem. Phys.
141
,
18C529
(
2014
).
8.
R. G.
Pereyra
,
I.
Szleifer
, and
M. A.
Carignano
, “
Temperature dependence of ice critical nucleus size
,”
J. Chem. Phys.
135
,
034508
(
2011
).
9.
W.
Cantrell
and
A.
Heymsfield
, “
Production of ice in tropospheric clouds: A review
,”
Bull. Am. Meteorol. Soc.
86
,
795
808
(
2005
).
10.
S. G.
Cober
,
G. A.
Isaac
, and
J. W.
Strapp
, “
Characterizations of aircraft icing environments that include supercooled large drops
,”
J. Appl. Meteorol.
40
,
1984
2002
(
2001
).
11.
X.
Xue
,
H.-L.
Jin
,
Z.-Z.
He
, and
J.
Liu
, “
Quantifying the growth rate and morphology of ice crystals growth in cryoprotectants via high-speed camera and cryomicroscope
,”
J. Heat Transfer
137
,
091020
(
2015
).
12.
T.
Sei
,
T.
Gonda
, and
Y.
Arima
, “
Growth rate and morphology of ice crystals growing in a solution of trehalose and water
,”
J. Cryst. Growth
240
,
218
229
(
2002
).
13.
G.
Petzold
and
J. M.
Aguilera
, “
Ice morphology: Fundamentals and technological applications in foods
,”
Food Biophys.
4
,
378
396
(
2009
).
14.
A.
Michaelides
and
K.
Morgenstern
, “
Ice nanoclusters at hydrophobic metal surfaces
,”
Nat. Mater.
6
,
597
(
2007
).
15.
J.
Hallett
, “
Experimental studies of the crystallization of supercooled water
,”
J. Atmos. Sci.
21
,
671
682
(
1964
).
16.
H. R.
Pruppacher
, “
Interpretation of experimentally determined growth rates of ice crystals in supercooled water
,”
J. Chem. Phys.
47
,
1807
1813
(
1967
).
17.
A.
Shibkov
,
M.
Zheltov
,
A.
Korolev
,
A.
Kazakov
, and
A.
Leonov
, “
Crossover from diffusion-limited to kinetics-limited growth of ice crystals
,”
J. Cryst. Growth
285
,
215
227
(
2005
).
18.
T.
Buttersack
and
S.
Bauerecker
, “
Critical radius of supercooled water droplets: On the transition toward dendritic freezing
,”
J. Phys. Chem. B
120
,
504
512
(
2016
).
19.
Y.
Xu
,
N. G.
Petrik
,
R. S.
Smith
,
B. D.
Kay
, and
G. A.
Kimmel
, “
Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
14921
14925
(
2016
).
20.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
21.
D. C.
Malaspina
,
A. J. B.
di Lorenzo
,
R. G.
Pereyra
,
I.
Szleifer
, and
M. A.
Carignano
, “
The water supercooled regime as described by four common water models
,”
J. Chem. Phys.
139
,
024506
(
2013
).
22.
G. C.
Picasso
,
D. C.
Malaspina
,
M. A.
Carignano
, and
I.
Szleifer
, “
Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water
,”
J. Chem. Phys.
139
,
044509
(
2013
).
23.
M.
Carignano
,
P.
Shepson
, and
I.
Szleifer
, “
Molecular dynamics simulations of ice growth from supercooled water
,”
Mol. Phys.
103
,
2957
2967
(
2005
).
24.
D.
Rozmanov
and
P. G.
Kusalik
, “
Temperature dependence of crystal growth of hexagonal ice (Ih)
,”
Phys. Chem. Chem. Phys.
13
,
15501
15511
(
2011
).
25.
D.
Rozmanov
and
P. G.
Kusalik
, “
Anisotropy in the crystal growth of hexagonal ice, Ih
,”
J. Chem. Phys.
137
,
094702
(
2012
).
26.
J. R.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On the time required to freeze water
,”
J. Chem. Phys.
145
,
211922
(
2016
).
27.
V. C.
Weiss
,
M.
Rullich
,
C.
Köhler
, and
T.
Frauenheim
, “
Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations
,”
J. Chem. Phys.
135
,
034701
(
2011
).
28.
A.
Zaragoza
,
J. R.
Espinosa
,
R.
Ramos
,
J. A.
Cobos
,
J. L.
Aragones
,
C.
Vega
,
E.
Sanz
,
J.
Ramírez
, and
C.
Valeriani
, “
Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: A simulation study
,”
J. Phys.: Condens. Matter
30
,
174002
(
2018
).
29.
R. G.
Fernandez
,
J, L, F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface
,”
J. Chem. Phys.
124
,
144506
(
2006
).
30.
H. W.
Wilson
, “
XX. On the velocity of solidification and viscosity of super-cooled liquids
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
50
,
238
250
(
1900
).
31.
J.
Frenkel
, “
Note on a relation between the speed of crystallization and viscosity
,”
Phisik. Zeit. Sowjetunion
1
,
498
510
(
1932
).
32.
J.
Broughton
,
G.
Gilmer
, and
K.
Jackson
, “
Crystallization rates of a Lennard-Jones liquid
,”
Phys. Rev. Lett.
49
,
1496
(
1982
).
33.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
, “
Gromacs 3.0: A package for molecular simulation and trajectory analysis
,”
J. Mol. Model.
7
,
306
(
2001
).
34.
J. L. F.
Abascal
,
E.
Sanz
,
R. G.
Fernandez
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
35.
M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
36.
R.
Feistel
and
W.
Wagner
, “
A new equation of state for H2O ice Ih
,”
J. Phys. Chem. Ref. Data
35
,
1021
1047
(
2006
).
37.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
38.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
(
1995
).
39.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
40.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
41.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
42.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
43.
J.
Benet
,
L. G.
MacDowell
, and
E.
Sanz
, “
A study of the ice-water interface using the TIP4P/2005 water model
,”
Phys. Chem. Chem. Phys.
16
,
22159
22166
(
2014
).
44.
A.
Zaragoza
,
M. M.
Conde
,
J. R.
Espinosa
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Competition between ices Ih and Ic in homogeneous water freezing
,”
J. Chem. Phys.
143
,
134504
(
2015
).
45.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
46.
P. G.
Debenedetti
, “
Supercooled and glassy water
,”
J. Phys.: Condens. Matter
15
,
R1669
R1726
(
2003
).
You do not currently have access to this content.