We investigate the effects of noise-induced coherence on average current and current fluctuations in a simple model of a quantum absorption refrigerator with degenerate energy levels. We describe and explain the differences and similarities between the system behavior when it operates in the classical regime, where the populations and coherences in the corresponding quantum optical master equation decouple in a suitably chosen basis, and in the quantum regime, where such a transformation does not exist. The differences between the quantum and the classical cases are observable only close to the maximum current regime, where the system steady-state becomes nonunique. This allows us to approximate the system dynamics by an analytical model based on a dichotomous process that explains the behavior of the average current both in the classical and in the quantum cases. Due to the nonuniqueness, the scaled cumulant generating function for the current at the vicinity of the critical point exhibits behavior reminiscent of the dynamical first-order phase transition. Unless the system parameters are fine-tuned to a single point in the parameter space, the corresponding current fluctuations are moderate in the quantum case and large in the classical case.

1.
K. E.
Dorfman
,
D. V.
Voronine
,
S.
Mukamel
, and
M. O.
Scully
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
2746
(
2013
).
2.
A.
del Campo
,
J.
Goold
, and
M.
Paternostro
,
Sci. Rep.
4
,
6208
(
2014
).
3.
S.
Vinjanampathy
and
J.
Anders
,
Contemp. Phys.
57
,
545
(
2016
).
4.
A.
Ghosh
,
V.
Mukherjee
,
W.
Niedenzu
, and
G.
Kurizki
,
Eur. Phys. J. Spec. Top.
227
,
2043
(
2019
).
5.
Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions
, edited by
F.
Binder
,
L. A.
Correa
,
C.
Gogolin
,
J.
Anders
, and
G.
Adesso
(
Springer International
,
2019
).
6.
V.
Holubec
and
T.
Novotný
,
J. Low Temp. Phys.
192
,
147
(
2018
).
7.
J. O.
González
,
J. P.
Palao
,
D.
Alonso
, and
L. A.
Correa
,
Phys. Rev. E
99
,
062102
(
2019
).
8.
M. O.
Scully
,
K. R.
Chapin
,
K. E.
Dorfman
,
M. B.
Kim
, and
A.
Svidzinsky
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
15097
(
2011
).
9.
A. A.
Svidzinsky
,
K. E.
Dorfman
, and
M. O.
Scully
,
Phys. Rev. A
84
,
053818
(
2011
).
10.
A.
Svidzinsky
,
K.
Dorfman
, and
M.
Scully
,
Coherent Opt. Phenom.
1
,
7
(
2012
).
12.
B.
Muralidharan
and
S.
Datta
,
Phys. Rev. B
76
,
035432
(
2007
).
13.
14.
K.-J.
Boller
,
A.
Imamoğlu
, and
S. E.
Harris
,
Phys. Rev. Lett.
66
,
2593
(
1991
).
15.
M. V.
Rybin
,
D. S.
Filonov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
M. F.
Limonov
,
Sci. Rep.
5
,
8774
(
2015
).
16.
Y. S.
Joe
,
A. M.
Satanin
, and
C. S.
Kim
,
Phys. Scr.
74
,
259
(
2006
).
17.
C.
Creatore
,
M. A.
Parker
,
S.
Emmott
, and
A. W.
Chin
,
Phys. Rev. Lett.
111
,
253601
(
2013
).
18.
H.-B.
Chen
,
P.-Y.
Chiu
, and
Y.-N.
Chen
,
Phys. Rev. E
94
,
052101
(
2016
).
19.
D.
Manzano
and
P.
Hurtado
,
Adv. Phys.
67
,
1
(
2018
).
20.
L. A.
Correa
,
J. P.
Palao
,
G.
Adesso
, and
D.
Alonso
,
Phys. Rev. E
87
,
042131
(
2013
).
21.
J. B.
Brask
and
N.
Brunner
,
Phys. Rev. E
92
,
062101
(
2015
).
22.
L. A.
Correa
,
J. P.
Palao
,
D.
Alonso
, and
G.
Adesso
,
Sci. Rep.
4
,
3949
(
2014
).
23.
R.
Silva
,
P.
Skrzypczyk
, and
N.
Brunner
,
Phys. Rev. E
92
,
012136
(
2015
).
24.
J. O.
González
,
J. P.
Palao
, and
D.
Alonso
,
New J. Phys.
19
,
113037
(
2017
).
26.
M.
Kilgour
and
D.
Segal
,
Phys. Rev. E
98
,
012117
(
2018
).
27.
M. T.
Mitchison
, “
Quantum thermal absorption machines: Refrigerators, engines and clocks
,”
Contemp. Phys.
(published online); preprint arXiv:1902.02672 (
2019
).
28.
A.
Levy
and
R.
Kosloff
,
Phys. Rev. Lett.
108
,
070604
(
2012
).
29.
V.
Holubec
and
A.
Ryabov
,
Phys. Rev. Lett.
121
,
120601
(
2018
).
30.
P.
Pietzonka
and
U.
Seifert
,
Phys. Rev. Lett.
120
,
190602
(
2018
).
31.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press on Demand
,
2002
).
32.
O.
Sedlák
, “
Quantum thermodynamics
,” Bachelor thesis,
Univerzita Karlova, Matematicko-Fyzikální Fakulta
,
2018
.
34.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
,
Phys. Rev. Lett.
87
,
040601
(
2001
).
35.
V.
Holubec
,
K.
Kroy
, and
S.
Steffenoni
,
Phys. Rev. E
99
,
032117
(
2019
).
36.
G.
Bulnes Cuetara
,
M.
Esposito
, and
G.
Schaller
,
Entropy
18
,
447
(
2016
).
37.
J. P.
Garrahan
and
I.
Lesanovsky
,
Phys. Rev. Lett.
104
,
160601
(
2010
).
38.
H.
Vroylandt
and
G.
Verley
,
J. Stat. Phys.
174
,
404
(
2019
).
39.
U.
Seifert
,
Eur. Phys. J. B
64
,
423
(
2008
).
40.
T. R.
Gingrich
,
J. M.
Horowitz
,
N.
Perunov
, and
J. L.
England
,
Phys. Rev. Lett.
116
,
120601
(
2016
).
41.
K.
Proesmans
and
C. V.
den Broeck
,
Europhys. Lett.
119
,
20001
(
2017
).
42.
Y.
Hasegawa
and
T.
Van Vu
, preprint arXiv:1902.06376 (
2019
).
43.
B. K.
Agarwalla
and
D.
Segal
,
Phys. Rev. B
98
,
155438
(
2018
).
44.
K.
Macieszczak
,
K.
Brandner
, and
J. P.
Garrahan
,
Phys. Rev. Lett.
121
,
130601
(
2018
).
45.
K.
Brandner
,
T.
Hanazato
, and
K.
Saito
,
Phys. Rev. Lett.
120
,
090601
(
2018
).
46.
H. J.
Miller
and
J.
Anders
,
Nat. Commun.
9
,
2203
(
2018
).
47.
M.
Kindermann
and
S.
Pilgram
,
Phys. Rev. B
69
,
155334
(
2004
).
48.
V.
Holubec
and
A.
Ryabov
,
Phys. Rev. E
96
,
030102
(
2017
).
49.
M.
Campisi
and
R.
Fazio
,
Nat. Commun.
7
,
11895
(
2016
).
You do not currently have access to this content.