We consider a rotationally invariant system-bath (RISB) model in three-dimensional space that is described by a linear rigid rotor independently coupled to three harmonic-oscillator baths through functions of the rotor’s Euler angles. While this model has been developed to study the dielectric relaxation of a dipolar molecule in solvation as a problem of classical Debye relaxation, here we investigate it as a problem of open quantum dynamics. Specifically, the treatment presented here is carried out as an extension of a previous work [Y. Iwamoto and Y. Tanimura, J. Chem. Phys 149, 084110 (2018)], in which we studied a two-dimensional (2D) RISB model, to a three-dimensional (3D) RISB model. As in the 2D case, due to a difference in the energy discretization of the total Hamiltonian, the dynamics described by the 3D RISB model differ significantly from those described by the rotational Caldeira-Leggett model. To illustrate the characteristic features of the quantum 3D rotor system described by angular momentum and magnetic quantum numbers, we derive a quantum master equation (QME) and hierarchical equations of motion for the 3D RISB model in the high-temperature case. Using the QME, we compute linear and 2D rotational spectra defined by the linear and nonlinear response functions of the rotor dipole, respectively. The quantum transitions between the angular momentum states and magnetic states arising from polarized Stark fields as well as the system-bath interactions can be clearly observed in 2D rotational spectroscopy.

1.
P.
Debye
,
Polar Molecules
(
Reinhold Publishing
,
New York
,
1929
).
2.
Molecular Spectroscopy
, edited by
D. A.
Long
,
D. J.
Millen
, and
R. F.
Barrow
(
Chemical Society
,
London
,
1974
), Vol. 2.
3.
W. G.
Rothschild
,
Dynamics of Molecular Liquids
(
John Wiley
,
New York
,
1984
).
4.
A. I.
Burshtein
and
S. I.
Temkin
,
Spectroscopy of Molecular Rotation in Gases and Liquids
(
Cambridge University Press
,
Cambridge
,
1994
).
5.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
6.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
084501
(
2006
).
7.
Y.
Tanimura
and
A.
Ishizaki
,
Acc. Chem. Res.
42
,
1270
(
2009
).
8.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
Singapore
,
2012
).
9.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
,
Phys. Rep.
168
,
115
(
1988
).
10.
H.
Katsuki
and
T.
Momose
,
Phys. Rev. Lett.
84
,
3286
(
2000
).
11.
B. N.
Flanders
,
X.
Shang
,
N. F.
Scherer
, and
D.
Grischkowsky
,
J. Phys. Chem. A
103
,
10054
(
1999
).
12.
S.
Fleischer
,
R. W.
Field
, and
K. A.
Nelson
,
Phys. Rev. Lett.
109
,
123603
(
2012
).
13.
J.
Lu
,
Y.
Zhang
,
H. Y.
Hwang
,
B. K.
Ofori-Okai
,
S.
Fleischer
, and
K. A.
Nelson
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
11800
(
2016
).
14.
J.
Lu
,
X.
Li
,
Y.
Zhang
,
H. Y.
Hwang
,
B. K.
Ofori-Okai
, and
K. A.
Nelson
,
Top. Curr. Chem.
376
,
6
(
2018
).
15.
K.
Lindenberg
,
U.
Mohanty
, and
V.
Seshadri
,
Physica A
119
,
1
(
1983
).
16.
P.
Navez
and
M. N.
Hounkonnou
,
J. Phys. A: Math. Gen.
28
,
6345
(
1995
).
17.
A. P.
Blokhin
,
M. F.
Gelin
, and
T.
Dreier
,
Phys. Chem. Chem. Phys.
1
,
5583
(
1999
).
18.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
19.
Y.
Suzuki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
70
,
1167
(
2001
).
20.
Y.
Suzuki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
71
,
2414
(
2002
).
21.
Y.
Suzuki
and
Y.
Tanimura
,
J. Chem. Phys.
119
,
1650
(
2003
).
22.
Y.
Iwamoto
and
Y.
Tanimura
,
J. Chem. Phys.
149
,
084110
(
2018
).
23.
Y.
Gefen
,
E.
Ben-Jacob
, and
A. O.
Caldeira
,
Phys. Rev. B
36
,
2770
(
1987
).
24.
J. R.
McConnell
,
Rotational Brownian Motion and Dielectric Theory
(
Academic
,
New York
,
1980
).
25.
A. I.
Burshtein
,
A. V.
Storozhev
, and
M. L.
Strekalov
,
Chem. Phys.
131
,
145
(
1989
).
26.
A. I.
Burshtein
and
A. V.
Storozhev
,
Chem. Phys.
164
,
47
(
1992
).
27.
N. N.
Filippov
and
M. V.
Tonkov
,
Spectrochim. Acta, Part A
52
,
901
(
1996
).
28.
W. T.
Coffey
,
Y. P.
Kalmykov
, and
J. T.
Waldron
,
The Langevin Equation
(
World Scientific
,
Singapore
,
1996
).
29.
C.
Uchiyama
and
F.
Shibata
,
Physica A
153
,
469
(
1988
).
30.
J.
Jang
and
R. M.
Stratt
,
J. Chem. Phys.
113
,
11212
(
2000
).
31.
J.
Jang
and
R. M.
Stratt
,
J. Chem. Phys.
113
,
5901
(
2000
).
32.
S. M.
Gallagher Faeder
and
D. M.
Jonas
,
J. Phys. Chem. A
103
,
10489
(
1999
).
33.
N.-H.
Ge
,
M. T.
Zanni
, and
R. M.
Hochstrasser
,
J. Phys. Chem. A
106
,
962
(
2002
).
34.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
35.
D.
Rosenberg
,
R.
Damari
,
S.
Kallush
, and
S.
Fleischer
,
J. Phys. Chem. Lett.
8
,
5128
(
2017
).
36.
T.
Grohmann
,
M.
Leibscher
, and
T.
Seideman
,
Phys. Rev. Lett.
118
,
203201
(
2017
).
37.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
39.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
40.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
41.
Y.
Tanimura
,
J. Chem. Phys.
141
,
044114
(
2014
).
42.
Y.
Tanimura
,
J. Chem. Phys.
142
,
144110
(
2015
).
43.
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
44.
Y.
Tanimura
and
P. G.
Wolynes
,
J. Chem. Phys.
96
,
8485
(
1992
).
45.
L.
Chen
,
M. F.
Gelin
, and
W.
Domcke
,
J. Chem. Phys.
151
,
034101
(
2019
).
46.
R. N.
Zare
,
Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics
(
Wiley-Interscience
,
New York
,
1988
).
47.
C. H.
Townes
and
A.
Schawlow
,
Microwave Spectroscopy
, 2nd ed., Dover Books on Physics (
Dover Publications
,
2012
).
48.
T.
Ikeda
,
Y.
Tanimura
, and
A.
Dijkstra
,
J. Chem. Phys.
150
,
114103
(
2019
).
49.
K.
Nakamura
and
Y.
Tanimura
,
Phys. Rev. A
98
,
012109
(
2018
).
50.
C.-Y.
Hsieh
and
J.
Cao
,
Chem. Phys.
148
,
014103
(
2018
).
51.
C.-Y.
Hsieh
and
J.
Cao
,
Chem. Phys.
148
,
014104
(
2018
).
You do not currently have access to this content.