We develop a method to study quantum impurity models, small interacting quantum systems bilinearly coupled to an environment, in the presence of an additional Markovian quantum bath, with a generic nonlinear coupling to the impurity. We aim at computing the evolution operator of the reduced density matrix of the impurity, obtained after tracing out all the environmental degrees of freedom. First, we derive an exact real-time hybridization expansion for this quantity, which generalizes the result obtained in the absence of the additional Markovian dissipation and which could be amenable to stochastic sampling through diagrammatic Monte Carlo. Then, we obtain a Dyson equation for this quantity and we evaluate its self-energy with a resummation technique known as the noncrossing approximation. We apply this novel approach to a simple fermionic impurity coupled to a zero temperature fermionic bath and in the presence of Markovian pump, losses, and dephasing.

1.
A. O.
Caldeira
and
A. J.
Leggett
, “
Influence of dissipation on quantum tunneling in macroscopic systems
,”
Phys. Rev. Lett.
46
,
211
(
1981
).
2.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
(
1987
).
3.
K. L.
Hur
,
L.
Henriet
,
L.
Herviou
,
K.
Plekhanov
,
A.
Petrescu
,
T.
Goren
,
M.
Schiro
,
C.
Mora
, and
P. P.
Orth
, “
Driven dissipative dynamics and topology of quantum impurity systems
,”
C. R. Phys.
19
,
451
483
(
2018
).
4.
A. C.
Hewson
,
The Kondo Problem to Heavy Fermions
(
Cambridge University Press
,
1993
).
5.
D.
Goldhaber-Gordon
 et al, “
Kondo effect in a single-electron transistor
,”
Nature
391
,
156
(
1998
).
6.
M.
Grobis
,
I. G.
Rau
,
R. M.
Potok
,
H.
Shtrikman
, and
D.
Goldhaber-Gordon
, “
Universal scaling in nonequilibrium transport through a single channel Kondo dot
,”
Phys. Rev. Lett.
100
,
246601
(
2008
).
7.
N.
Roch
,
S.
Florens
,
V.
Bouchiat
,
W.
Wernsdorfer
, and
F.
Balestro
, “
Quantum phase transition in a single-molecule quantum dot
,”
Nature
453
,
633
(
2008
).
8.
Z.
Iftikhar
,
A.
Anthore
,
A. K.
Mitchell
,
F. D.
Parmentier
,
U.
Gennser
,
A.
Ouerghi
,
A.
Cavanna
,
C.
Mora
,
P.
Simon
, and
F.
Pierre
, “
Tunable quantum criticality and super-ballistic transport in a ‘charge’ Kondo circuit
,”
Science
360
,
1315
1320
(
2018
).
9.
G.
Cohen
and
E.
Rabani
, “
Memory effects in nonequilibrium quantum impurity models
,”
Phys. Rev. B
84
,
075150
(
2011
).
10.
E.
Gull
,
A. J.
Millis
,
A. I.
Lichtenstein
,
A. N.
Rubtsov
,
M.
Troyer
, and
P.
Werner
, “
Continuous-time Monte Carlo methods for quantum impurity models
,”
Rev. Mod. Phys.
83
,
349
404
(
2011
).
11.
L.
Mühlbacher
and
E.
Rabani
, “
Real-time path integral approach to nonequilibrium many-body quantum systems
,”
Phys. Rev. Lett.
100
,
176403
(
2008
).
12.
M.
Schiró
and
M.
Fabrizio
, “
Real-time diagrammatic Monte Carlo for nonequilibrium quantum transport
,”
Phys. Rev. B
79
,
153302
(
2009
).
13.
P.
Werner
,
T.
Oka
, and
A. J.
Millis
, “
Diagrammatic Monte Carlo simulation of nonequilibrium systems
,”
Phys. Rev. B
79
,
035320
(
2009
).
14.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
,
A. J.
Millis
, and
E.
Rabani
, “
Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model
,”
Phys. Rev. B
87
,
195108
(
2013
).
15.
R. E. V.
Profumo
,
C.
Groth
,
L.
Messio
,
O.
Parcollet
, and
X.
Waintal
, “
Quantum Monte Carlo for correlated out-of-equilibrium nanoelectronic devices
,”
Phys. Rev. B
91
,
245154
(
2015
).
16.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
, and
A. J.
Millis
, “
Taming the dynamical sign problem in real-time evolution of quantum many-body problems
,”
Phys. Rev. Lett.
115
,
266802
(
2015
).
17.
H.-T.
Chen
,
G.
Cohen
, and
D. R.
Reichman
, “
Inchworm Monte Carlo for exact non-adiabatic dynamics. I. Theory and algorithms
,”
J. Chem. Phys.
146
,
054105
(
2017
).
18.
H.-T.
Chen
,
G.
Cohen
, and
D. R.
Reichman
, “
Inchworm Monte Carlo for exact non-adiabatic dynamics. II. Benchmarks and comparison with established methods
,”
J. Chem. Phys.
146
,
054106
(
2017
).
19.
I.
Bloch
,
J.
Dalibard
, and
S.
Nascimbène
, “
Quantum simulations with ultracold quantum gases
,”
Nat. Phys.
8
,
267
(
2012
).
20.
R.
Blatt
and
C. F.
Roos
, “
Quantum simulations with trapped ions
,”
Nat. Phys.
8
,
277
(
2012
).
21.
A. A.
Houck
,
H. E.
Tureci
, and
J.
Koch
, “
On-chip quantum simulation with superconducting circuits
,”
Nat. Phys.
8
,
292
(
2012
).
22.
K. L.
Hur
,
L.
Henriet
,
A.
Petrescu
,
K.
Plekhanov
,
G.
Roux
, and
M.
Schiró
, “
Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light
,”
C. R. Phys.
17
,
808
835
(
2016
).
23.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
, 1st ed. (
Oxford University Press
,
USA
,
2002
).
24.
S.
Diehl
,
A.
Micheli
,
A.
Kantian
,
B.
Kraus
,
H. P.
Buchler
, and
P.
Zoller
, “
Quantum states and phases in driven open quantum systems with cold atoms
,”
Nat. Phys.
4
,
878
883
(
2008
).
25.
F.
Verstraete
,
M. M.
Wolf
, and
J.
Ignacio Cirac
, “
Quantum computation and quantum-state engineering driven by dissipation
,”
Nat. Phys.
5
,
633
636
(
2009
).
26.
K. W.
Murch
,
U.
Vool
,
D.
Zhou
,
S. J.
Weber
,
S. M.
Girvin
, and
I.
Siddiqi
, “
Cavity-assisted quantum bath engineering
,”
Phys. Rev. Lett.
109
,
183602
(
2012
).
27.
M.
Nakagawa
,
N.
Kawakami
, and
M.
Ueda
, “
Non-Hermitian Kondo effect in ultracold alkaline-earth atoms
,”
Phys. Rev. Lett.
121
,
203001
(
2018
).
28.
F.
Tonielli
,
R.
Fazio
,
S.
Diehl
, and
J.
Marino
, “
Orthogonality catastrophe in dissipative quantum many-body systems,
Phys. Rev. Lett.
122
,
040604
(
2019
).
29.
H.
Fröml
,
A.
Chiocchetta
,
C.
Kollath
, and
S.
Diehl
, “
Fluctuation-induced quantum Zeno effect
,”
Phys. Rev. Lett.
122
,
040402
(
2019
).
30.
M. R.
Delbecq
,
V.
Schmitt
,
F. D.
Parmentier
,
N.
Roch
,
J. J.
Viennot
,
G.
Fève
,
B.
Huard
,
C.
Mora
,
A.
Cottet
, and
T.
Kontos
, “
Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip
,”
Phys. Rev. Lett.
107
,
256804
(
2011
).
31.
M.
Schiró
and
K.
Le Hur
, “
Tunable hybrid quantum electrodynamics from nonlinear electron transport
,”
Phys. Rev. B
89
,
195127
(
2014
).
32.
L. E.
Bruhat
,
J. J.
Viennot
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Kontos
, and
A.
Cottet
, “
Cavity photons as a probe for charge relaxation resistance and photon emission in a quantum dot coupled to normal and superconducting continua
,”
Phys. Rev. X
6
,
021014
(
2016
).
33.
A.
Cottet
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Cubaynes
,
L. C.
Contamin
,
M.
Delbecq
,
J. J.
Viennot
,
L. E.
Bruhat
,
B.
Douçot
, and
T.
Kontos
, “
Cavity QED with hybrid nanocircuits: From atomic-like physics to condensed matter phenomena
,”
J. Phys.: Condens. Matter
29
,
433002
(
2017
).
34.
B.-H.
Liu
,
L.
Li
,
Y.-F.
Huang
,
C.-F.
Li
,
G.-C.
Guo
,
E.-M.
Laine
,
H.-P.
Breuer
, and
J.
Piilo
, “
Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems
,”
Nat. Phys.
7
,
931
934
(
2011
).
35.
Á.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Quantum non-Markovianity: Characterization, quantification and detection
,”
Rep. Prog. Phys.
77
,
094001
(
2014
).
36.
H.-P.
Breuer
,
E.-M.
Laine
,
J.
Piilo
, and
B.
Vacchini
, “
Colloquium: Non-Markovian dynamics in open quantum systems
,”
Rev. Mod. Phys.
88
,
021002
(
2016
).
37.
K.
Haule
, “
Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base
,”
Phys. Rev. B
75
,
155113
(
2007
).
38.
N. E.
Bickers
, “
Review of techniques in the large-N expansion for dilute magnetic alloys
,”
Rev. Mod. Phys.
59
,
845
939
(
1987
).
39.
P.
Nordlander
,
M.
Pustilnik
,
Y.
Meir
,
N. S.
Wingreen
, and
D. C.
Langreth
, “
How long does it take for the Kondo effect to develop?
,”
Phys. Rev. Lett.
83
,
808
811
(
1999
); e-print arXiv:9903240v1 [arXiv:cond-mat].
40.
M.
Eckstein
and
P.
Werner
, “
Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations
,”
Phys. Rev. B
82
,
115115
(
2010
).
41.
A.
Rüegg
,
E.
Gull
,
G. A.
Fiete
, and
A. J.
Millis
, “
Sum rule violation in self-consistent hybridization expansions
,”
Phys. Rev. B
87
,
075124
(
2013
).
42.
H. U. R.
Strand
,
M.
Eckstein
, and
P.
Werner
, “
Nonequilibrium dynamical mean-field theory for bosonic lattice models
,”
Phys. Rev. X
5
,
011038
(
2015
).
43.
F.
Peronaci
,
M.
Schiró
, and
O.
Parcollet
, “
Resonant thermalization of periodically driven strongly correlated electrons
,”
Phys. Rev. Lett.
120
,
197601
(
2018
).
44.
H.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
OUP
,
Oxford
,
2007
).
45.
H.
Aoki
,
N.
Tsuji
,
M.
Eckstein
,
M.
Kollar
,
T.
Oka
, and
P.
Werner
, “
Nonequilibrium dynamical mean-field theory and its applications
,”
Rev. Mod. Phys.
86
,
779
837
(
2014
).
46.
H.
Carmichael
,
Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Physics and Astronomy Online Library
(
Springer
,
1999
).
47.
J.
Schwinger
, “
Brownian motion of a quantum oscillator
,”
J. Math. Phys.
2
,
407
432
(
1961
).
48.
L. V.
Keldysh
, “
Diagram technique for nonequilibrium processes
,”
Zh. Eksp. Teor. Fiz.
47
,
1515
1527
(
1964
).
49.
P.
Danielewicz
, “
Quantum theory of nonequilibrium processes II. Application to nuclear collisions
,”
Ann. Phys.
152
,
305
326
(
1984
).
50.
P.
Danielewicz
, “
Quantum theory of nonequilibrium processes, I
,”
Ann. Phys.
152
,
239
304
(
1984
).
51.
M.
Wagner
, “
Expansions of nonequilibrium green’s functions
,”
Phys. Rev. B
44
,
6104
6117
(
1991
).
52.
M.
Schiró
, “
Real-time dynamics in quantum impurity models with diagrammatic Monte Carlo
,”
Phys. Rev. B
81
,
085126
(
2010
).
53.
C. W.
Gardiner
and
M. J.
Collett
, “
Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation
,”
Phys. Rev. A
31
,
3761
3774
(
1985
).
54.
P.
Werner
,
A.
Comanac
,
L.
de’ Medici
,
M.
Troyer
, and
A. J.
Millis
, “
Continuous-time solver for quantum impurity models
,”
Phys. Rev. Lett.
97
,
076405
(
2006
).
55.
C.
Müller
and
T. M.
Stace
, “
Deriving Lindblad master equations with Keldysh diagrams: Correlated gain and loss in higher order perturbation theory
,”
Phys. Rev. A
95
,
013847
(
2017
).
56.
V.
Reimer
and
M. R.
Wegewijs
, “
Density-operator evolution: Complete positivity and the Keldysh real-time expansion
,” e-print arXiv:1808.09395 (
2018
),
1
45
.
57.
D.
Golež
,
M.
Eckstein
, and
P.
Werner
, “
Dynamics of screening in photodoped Mott insulators
,”
Phys. Rev. B
92
,
195123
(
2015
).
58.
H.-T.
Chen
,
G.
Cohen
,
A. J.
Millis
, and
D. R.
Reichman
, “
Anderson-Holstein model in two flavors of the noncrossing approximation
,”
Phys. Rev. B
93
,
174309
(
2016
).

Supplementary Material

You do not currently have access to this content.