To extend the classical concept of Markovianity to an open quantum system, different notions of the divisibility of its dynamics have been introduced. Here, we analyze this issue by five complementary approaches: equations of motion, real-time diagrammatics, Kraus-operator sums, as well as time-local and nonlocal (Nakajima-Zwanzig) quantum master equations. As a case study featuring several types of divisible dynamics, we examine in detail an exactly solvable noninteracting fermionic resonant level coupled arbitrarily strongly to a fermionic bath at an arbitrary temperature in the wideband limit. In particular, the impact of divisibility on the time-dependence of the observable level occupation is investigated and compared with typical Markovian approximations. We find that the loss of semigroup-divisibility is accompanied by a prominent reentrant behavior: Counter to intuition, the level occupation may temporarily increase significantly in order to reach a stationary state with smaller occupation, implying a reversal of the measurable transport current. In contrast, the loss of the so-called completely positive divisibility is more subtly signaled by the prohibition of such current reversals in specific time-intervals. Experimentally, it can be detected in the family of transient currents obtained by varying the initial occupation. To quantify the nonzero footprint left by the system in its effective environment, we determine the exact time-dependent state of the latter as well as related information measures such as entropy, exchange entropy, and coherent information.

1.
P.
Rebentrost
,
I.
Serban
,
T.
Schulte-Herbrüggen
, and
F. K.
Wilhelm
,
Phys. Rev. Lett.
102
,
090401
(
2009
).
3.
G.
Gasbarri
and
L.
Ferialdi
,
Phys. Rev. A
97
,
022114
(
2018
).
5.
G.
Cohen
and
E.
Rabani
,
Phys. Rev. B
84
,
075150
(
2011
).
6.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
,
A. J.
Millis
, and
E.
Rabani
,
Phys. Rev. B
87
,
195108
(
2013
).
7.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
8.
R.
Härtle
,
G.
Cohen
,
D. R.
Reichman
, and
A. J.
Millis
,
Phys. Rev. B
88
,
235426
(
2013
).
9.
E. Y.
Wilner
,
H.
Wang
,
G.
Cohen
,
M.
Thoss
, and
E.
Rabani
,
Phys. Rev. B
88
,
045137
(
2013
).
10.
J.
König
,
H.
Schoeller
, and
G.
Schön
,
Phys. Rev. Lett.
76
,
1715
(
1996
).
11.
J.
König
,
H.
Schoeller
, and
G.
Schön
,
Phys. Rev. Lett.
78
,
4482
(
1997
).
12.
B.
Kubala
and
J.
König
,
Phys. Rev. B
73
,
195316
(
2006
).
13.
M.
Leijnse
and
M. R.
Wegewijs
,
Phys. Rev. B
78
,
235424
(
2008
).
14.
S.
Koller
,
M.
Grifoni
,
M.
Leijnse
, and
M. R.
Wegewijs
,
Phys. Rev. B
82
,
235307
(
2010
).
15.
R. B.
Saptsov
and
M. R.
Wegewijs
,
Phys. Rev. B
90
,
045407
(
2014
).
16.
M. H.
Ansari
and
Y. V.
Nazarov
,
Phys. Rev. B
91
,
174307
(
2015
).
17.
J.
König
,
J.
Schmid
,
H.
Schoeller
, and
G.
Schön
,
Phys. Rev. B
54
,
16820
(
1996
).
18.
Y.
Utsumi
,
J.
Martinek
,
G.
Schön
,
H.
Imamura
, and
S.
Maekawa
,
Phys. Rev. B
71
,
245116
(
2005
).
19.
J.
Kern
and
M.
Grifoni
,
Eur. Phys. J. B
86
,
384
(
2013
).
20.
J. N.
Pedersen
and
A.
Wacker
,
Phys. Rev. B
72
,
195330
(
2005
).
21.
J. N.
Pedersen
,
B.
Lassen
,
A.
Wacker
, and
M. H.
Hettler
,
Phys. Rev. B
75
,
235314
(
2007
).
22.
O.
Karlström
,
C.
Emary
,
P.
Zedler
,
J. N.
Pedersen
,
C.
Bergenfeldt
,
P.
Samuelsson
,
T.
Brandes
, and
A.
Wacker
,
J. Phys. A: Math. Theor.
46
,
065301
(
2013
).
23.
25.
H.
Schoeller
,
Eur. Phys. J.: Spec. Top.
168
,
179
(
2009
).
26.
S.
Andergassen
,
M.
Pletyukhov
,
D.
Schuricht
,
H.
Schoeller
, and
L.
Borda
,
Phys. Rev. B
83
,
205103
(
2011
).
27.
M.
Pletyukhov
and
H.
Schoeller
,
Phys. Rev. Lett.
108
,
260601
(
2012
).
28.
R. B.
Saptsov
and
M. R.
Wegewijs
,
Phys. Rev. B
86
,
235432
(
2012
).
29.
O.
Kashuba
,
D. M.
Kennes
,
M.
Pletyukhov
,
V.
Meden
, and
H.
Schoeller
,
Phys. Rev. B
88
,
165133
(
2013
).
30.
F.
Reininghaus
,
M.
Pletyukhov
, and
H.
Schoeller
,
Phys. Rev. B
90
,
085121
(
2014
).
31.
C. J.
Lindner
and
H.
Schoeller
,
Phys. Rev. B
98
,
115425
(
2018
).
32.
H.
Schoeller
, e-print arXiv:1802.10014.
33.
A.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
,
Rep. Prog. Phys.
77
,
094001
(
2014
).
34.
E. C. G.
Sudarshan
,
P. M.
Mathews
, and
J.
Rau
,
Phys. Rev.
121
,
920
(
1961
).
36.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
37.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
38.
D.
Chruściński
and
A.
Kossakowski
,
Phys. Rev. Lett.
111
,
050402
(
2013
).
39.
A. J.
van Wonderen
and
L. G.
Suttorp
,
Europhys. Lett.
102
,
60001
(
2013
).
40.
A. J.
van Wonderen
and
L. G.
Suttorp
,
J. Phys. A: Math. Gen.
51
,
175304
(
2018
).
41.
A. J.
van Wonderen
and
L. G.
Suttorp
, e-print arXiv:1808.04198.
42.
V.
Reimer
and
M. R.
Wegewijs
, e-print arXiv:1808.09395.
43.
R.
Gaudenzi
,
M.
Misiorny
,
E.
Burzurí
,
M. R.
Wegewijs
, and
H. S. J.
van der Zant
,
J. Chem. Phys.
146
,
092330
(
2017
).
44.
C.
Caroli
,
R.
Combescot
,
D.
Lederer
,
P.
Nozieres
, and
D.
Saint-James
,
J. Phys. C: Solid State Phys.
4
,
2598
(
1971
).
45.
S.
Elke
and
C.
Carlos
,
Molecular Electronics: An Introduction to Theory and Experiment
, World Scientific Series in Nanoscience and Nanotechnology (
World Scientific Publishing Company
,
2010
).
46.
E. Y.
Wilner
,
J. L.
Tal
, and
E.
Rabani
,
J. Chem. Phys.
134
,
164103
(
2011
).
47.
E. Y.
Wilner
,
J. L.
Tal
, and
E.
Rabani
,
J. Chem. Phys.
137
,
214107
(
2012
).
48.
A. J.
van Wonderen
and
K.
Lendi
,
Europhys. Lett.
71
,
737
(
2005
).
49.
A. J.
van Wonderen
and
K.
Lendi
,
J. Phys. A
39
,
14511
(
2006
).
50.
T. F.
Jordan
and
E. C. G.
Sudarshan
,
J. Math. Phys.
2
,
772
(
1961
).
51.
K. E.
Hellwig
and
K.
Kraus
,
Commun. Math. Phys.
11
,
214
(
1969
).
52.
C.
Addis
,
B.
Bylicka
,
D.
Chruściński
, and
S.
Maniscalco
,
Phys. Rev. A
90
,
052103
(
2014
).
53.
D.
Chruściński
,
A.
Kossakowski
, and
A.
Rivas
,
Phys. Rev. A
83
,
052128
(
2011
).
54.
D.
Chruściński
,
C.
Macchiavello
, and
S.
Maniscalco
,
Phys. Rev. Lett.
118
,
080404
(
2017
).
55.
56.
H.-P.
Breuer
,
E.-M.
Laine
,
J.
Piilo
, and
B.
Vacchini
,
Rev. Mod. Phys.
88
,
021002
(
2016
).
57.
Á.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050403
(
2010
).
58.
F.
Benatti
,
D.
Chruściński
, and
S.
Filippov
,
Phys. Rev. A
95
,
012112
(
2017
).
59.
D.
Chruściński
and
A.
Kossakowski
,
Phys. Rev. A
94
,
020103
(
2016
).
60.
S.
Milz
,
M. S.
Kim
,
F. A.
Pollock
, and
K.
Modi
, e-print arXiv:1901.05223.
61.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
,
J. Math. Phys.
17
,
821
(
1976
).
62.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
63.
B.
Vacchini
and
H.-P.
Breuer
,
Phys. Rev. A
81
,
042103
(
2010
).
64.
65.
S.
Bhattacharya
,
A.
Misra
,
C.
Mukhopadhyay
, and
A. K.
Pati
,
Phys. Rev. A
95
,
012122
(
2017
).
66.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
67.
M.
Scala
,
B.
Militello
,
A.
Messina
,
J.
Piilo
, and
S.
Maniscalco
,
Phys. Rev. A
75
,
013811
(
2007
).
68.
L.
Ferialdi
,
Phys. Rev. A
95
,
020101
(
2017
).
69.
L.
Ferialdi
,
Phys. Rev. A
95
,
069908
(
2017
).
70.
F. A.
Buot
,
Nonequilibrium Quantum Transport Physics in Nanosystems
(
World Scientific
,
2009
).
71.
S.
Andergassen
,
V.
Meden
,
H.
Schoeller
,
J.
Splettstoesser
, and
M. R.
Wegewijs
,
Nanotechnology
21
,
272001
(
2010
).
72.
E. Y.
Wilner
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
,
Phys. Rev. B
89
,
205129
(
2014
).
73.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2010
).
74.
R. H.
Lehmberg
,
Phys. Rev. A
2
,
883
(
1970
).
75.
K.
Lalumière
,
B. C.
Sanders
,
A. F.
van Loo
,
A.
Fedorov
,
A.
Wallraff
, and
A.
Blais
,
Phys. Rev. A
88
,
043806
(
2013
).
76.
I.
de Vega
and
D.
Alonso
,
Rev. Mod. Phys.
89
,
015001
(
2017
).
77.
D.
Ryndyk
,
Theory of Quantum Transport at Nanoscale: An Introduction
, Springer Series in Solid-State Sciences (
Springer International Publishing
,
2015
).
78.
J.
Schulenborg
,
R. B.
Saptsov
,
F.
Haupt
,
J.
Splettstoesser
, and
M. R.
Wegewijs
,
Phys. Rev. B
93
,
081411
(
2016
).
79.
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
,
J. Stat. Phys.
17
,
171
(
1977
).
80.
N.
Hashitsume
,
F.
Shibata
, and
M.
Shingu
,
J. Stat. Phys.
17
,
155
(
1977
).
81.
S.
Chaturvedi
and
F.
Shibata
,
Z. Phys. B: Condens. Matter Quanta
35
,
297
(
1979
).
82.
F.
Shibata
and
T.
Arimitsu
,
J. Phys. Soc. Jpn.
49
,
891
(
1980
).
83.
D. W.
Berry
and
H. M.
Wiseman
,
Nat. Photonics
3
,
317
(
2009
).
84.
85.

Additional memory effects appear when lifting the assumption of infinite reservoir bandwidth (unrestricted ω integral) and ω-independent coupling Γ, see p. 8 of Ref. 28 and also, e.g., Refs. 151 and 152.

86.
G. C.
Wick
,
A. S.
Wightman
, and
E. P.
Wigner
,
Phys. Rev.
88
,
101
(
1952
).
87.
Y.
Aharonov
and
L.
Susskind
,
Phys. Rev.
155
,
1428
(
1967
).
88.
V.
Weisskopf
and
E.
Wigner
,
Z. Phys.
63
,
54
(
1930
).
89.
E. T.
Jaynes
and
F. W.
Cummings
,
Proc. IEEE
51
,
89
(
1963
).
90.
J.
Watrous
,
The Theory of Quantum Information
(
Cambridge University Press
,
Cambridge
,
2018
).
91.
S.
Milz
,
F. A.
Pollock
, and
K.
Modi
,
Open Syst. Inf. Dyn.
24
,
1740016
(
2017
).
92.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Cambridge
,
2002
).
93.
J. E.
de Pillis
,
Pac. J. Math.
23
,
129
(
1967
).
94.
A.
Jamiołkowski
,
Rep. Math. Phys.
3
,
275
(
1972
).
95.
M.-D.
Choi
,
Linear Algebra Appl.
10
,
285
(
1975
).
96.

Any two Kraus-operator sets are unitarily [V(t)] related73,90 as Km(t) = mKm(t)Vmm(t). We note that methods which directly compute the Kraus operators from a microscopic expansion39–42 start from a representation with infinitely many operators Km(t) and finding the unitary V(t) is difficult.

97.
B.
Schumacher
and
M. A.
Nielsen
,
Phys. Rev. A
54
,
2629
(
1996
).
98.
J.
Preskill
,
Quantum Information and Computation, Lecture Notes for Physics 229
(
California Inst. Tech
.,
1998
); available at http://www.theory.caltech.edu/people/preskill/ph229/.
99.
W. F.
Stinespring
,
Proc. Am. Math. Soc.
6
,
211
(
1955
).
100.

Representations with mixed effective environments may exist, but only if certain additional conditions hold, see, e.g., the appendix “Mixed-state measurement models and extreme operations” in Ref. 153.

101.

One can in general extend U′(t) → mKm(t) ⊗ |m⟩⟨0| + X(t) to be unitary.73,154 However, the additional term obeys the property X(t)|0⟩ = 0 and thus drops out of all physical quantities because the effective environment starts out in a pure state |0⟩.

102.

The effective environment state ρE(t) is the result of the action of the so-called complementary quantum channel associated with Π(t). It plays a key role in transmission of quantum information98,146 and measurement-information trade-off.155 

103.
H.
Araki
and
E. H.
Lieb
,
Commun. Math. Phys.
18
,
160
(
1970
).
104.
E.
Andersson
,
J. D.
Cresser
, and
M. J. W.
Hall
,
J. Mod. Opt.
54
,
1695
(
2007
).
105.
106.
T.
Prosen
,
J. Stat. Mech.: Theory Exp.
2010
,
P07020
.
107.
N.
Megier
,
D.
Chruściński
,
J.
Piilo
, and
W. T.
Strunz
,
Sci. Rep.
7
,
6379
(
2017
).
108.
Y.
Meir
and
N. S.
Wingreen
,
Phys. Rev. Lett.
68
,
2512
(
1992
).
109.
J.
Rammer
,
Quantum Field Theory of Non-Equilibrium States
(
Cambridge University Press
,
Cambridge
,
2007
).
110.
L.
Kidon
,
E. Y.
Wilner
, and
E.
Rabani
,
J. Chem. Phys.
143
,
234110
(
2015
).
111.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
Cambridge
,
2013
).
112.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics
(
Springer
,
Berlin, Heidelberg
,
2004
).
113.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
,
Rev. Mod. Phys.
82
,
1155
(
2010
).
114.
V.
Reimer
,
K. G. L.
Pedersen
,
N.
Tanger
,
M.
Pletyukhov
, and
V.
Gritsev
,
Phys. Rev. A
97
,
043851
(
2018
).
115.
J.
Schulenborg
,
J.
Splettstoesser
,
M.
Governale
, and
D.
Contreras-Pulido
,
Phys. Rev. B
89
,
195305
(
2014
).
116.
J.
Vanherck
,
J.
Schulenborg
,
R. B.
Saptsov
,
J.
Splettstoesser
, and
M. R.
Wegewijs
,
Phys. Status Solidi B
254
,
1600614
(
2017
).
117.
J.
Schulenborg
,
J.
Splettstoesser
, and
M. R.
Wegewijs
,
Phys. Rev. B
98
,
235405
(
2018
).
118.
M. J. W.
Hall
,
J. Phys. A: Math. Theor.
41
,
205302
(
2008
).
119.
R. S.
Whitney
,
J. Phys. A: Math. Theor.
41
,
175304
(
2008
).
120.
M.
Schmutz
,
Z. Phys. B: Condens. Matter Quanta
30
,
97
(
1978
).
121.
D.
Kosov
,
J. Chem. Phys.
131
,
171102
(
2009
).
122.
U.
Harbola
and
S.
Mukamel
,
Phys. Rep.
465
,
191
(
2008
).
123.
A. A.
Dzhioev
and
D. S.
Kosov
,
J. Chem. Phys.
134
,
044121
(
2011
).
124.
A. A.
Dzhioev
and
D. S.
Kosov
,
J. Phys.: Condens. Matter
24
,
225304
(
2012
).
125.

It is often not realized that fermionic particle statistics only requires fields acting on the same mode to anticommute, see paragraph 65 of Ref. 156. Fields acting on different modes can be chosen to either commute or anticommute, see Ref. 15 for a detailed discussion. We stress that this is not specific to noninteracting models and allows for drastic simplifications, especially in open-system dynamics.

126.

One cannot apply the GKSL semigroup or CP-divisibility theorem (14) to the physical evolution because neither theorem is conclusive for many model parameters, see Sec. VII.

127.

Within the spin formulation (6), the lack of parity-superselection complicates the structure of both system and effective environment density matrices but leaves their positivity properties unaffected, see Appendix E 4 for a detailed discussion.

128.

Since the effective environment has finite dimension 4, it can always be considered as consisting of two qubits.73 However, because the joint state is block-diagonal by the superselection property of the dynamics, it is consistent to consider the environment as two fermions.

129.
L.
Kidon
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
,
J. Chem. Phys.
149
,
104105
(
2018
).
130.

The time-local generator (51a) is obtained either by taking the time-derivative of the exponential form (41b), by superfermion considerations (Appendix D 3), or by explicitly inverting the EOM result (24) to calculate ddtΠ(t)Π(t)1 (Appendix B 5).

131.

In the “initial slip” approach,155,156 one also replaces the time-local QME by another time-constant QME which has the same stationary state as the original equation. To further improve this approximation, one additionally modifies the initial condition, see Ref. 119. Importantly, a constant initial slip will never recover the interesting reentrant behavior discussed in Sec. VIII because the dynamical map remains a semigroup.

132.
Yu. V.
Nazarov
,
Pis’ma Zh. Eksp. Teor. Fiz.
49
,
105
(
1989
) [JETP Lett. 49, 126 (1989)].
133.
S. A.
Gurvitz
and
Y. S.
Prager
,
Phys. Rev. B
53
,
15932
(
1996
).
134.
135.
A.
Oguri
and
J. Phys.: Condens. Matter
71
,
2969
(
2002
).
136.
B.
Wunsch
,
M.
Braun
,
J.
König
, and
D.
Pfannkuche
,
Phys. Rev. B
72
,
205319
(
2005
).
137.
L. D.
Contreras-Pulido
,
J.
Splettstoesser
,
M.
Governale
,
J.
König
, and
M.
Büttiker
,
Phys. Rev. B
85
,
075301
(
2012
).
138.
K.
Nestmann
and
C.
Timm
, e-print arXiv:1903.05132.
139.
J.
König
,
H.
Schoeller
, and
G.
Schön
,
Europhys. Lett.
31
,
31
(
1995
).
140.
H.
Schoeller
,
Lect. Notes Phys.
544
,
137
(
2000
).
141.
(44)]: the physical zero-mode is only visited if all observables spanning an orthonormal operator-basis are extremal at the same time.
142.
N.
Dittmann
,
J.
Splettstoesser
, and
N.
Helbig
,
Phys. Rev. Lett.
120
,
157701
(
2018
).
143.
S.
Kurth
and
G.
Stefanucci
,
Eur. Phys. J. B
91
,
118
(
2018
).
144.
M. M.
Wilde
, (Cambridge University Press, 2013).
145.
M.
Horodecki
,
J.
Oppenheim
, and
A.
Winter
,
Nature
436
,
673
(
2005
).
146.
M.
Horodecki
,
J.
Oppenheim
, and
A.
Winter
,
Commun. Math. Phys.
269
,
107
(
2007
).
147.
M. M.
Wolf
, “
Quantum channels and operations–guided tour (lecture notes)
” (
2002
), https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.
148.
F.
Zhang
,
The Schur Complement and its Applications
(
Springer
,
2005
).
149.
K.
Roszak
and
T.
Novotný
,
Phys. Scr.
T151
,
014053
(
2012
).
150.
N.
Ubbelohde
,
K.
Roszak
,
F.
Hohls
,
N.
Maire
,
R. J.
Haug
, and
T.
Novotný
,
Sci. Rep.
2
,
374
(
2012
).
151.
C.
Caves
, Quantum information theory (lecture notes), http://info.phys.unm.edu/caves.
152.
153.
A. S.
Holevo
and
V.
Giovannetti
,
Rep. Prog. Phys.
75
,
046001
(
2012
).
154.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Butterworth-Heinemann
,
1977
).
155.
U.
Geigenmüller
,
U. M.
Titulaer
, and
B. U.
Felderhof
,
Physica A
119
,
41
(
1983
).
156.
S.
Gnutzmann
and
F.
Haake
,
Z. Phys. B: Condens. Matter
101
,
263
(
1996
).
You do not currently have access to this content.