We present a density functional (DF) analysis for the entropic force in Atomic Force Microscopy (AFM) across the layers of a dense fluid. Previous theoretical analysis, based on the ideal gas entropy, was apparently supported by the similarity in the oscillatory decay for the force and density profile. We point out that such similarity is a generic DF result, which carries no information on the interface, since the decaying mode is characteristic of the bulk fluid correlation. The truly interfacial information, from the layering measured by AFM, comes in its amplitude and not in the decay mode. With our rigorous study of a simple hard sphere model, we find semiempirical clues to disentangle the role of the tip radius and to relate the amplitude of the molecular layering to the oscillatory force on the AFM tip.

1.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
H.-J.
Butt
,
B.
Cappella
, and
M.
Kappl
,
Surf. Sci. Rep.
59
,
1
(
2005
).
3.
T.
Fukuma
,
Y.
Ueda
,
S.
Yoshioka
, and
H.
Asakawa
,
Phys. Rev. Lett.
104
,
016101
(
2010
).
4.
D.
Martin-Jimenez
and
R.
Garcia
,
Phys. Chem. Lett.
8
,
5707
(
2017
).
5.
T.
Fukuma
,
B.
Reischl
,
N.
Kobayashi
,
P.
Spijker
,
F. F.
Canova
,
K.
Miyazawa
, and
A. S.
Foster
,
Phys. Rev. B
92
,
155412
(
2015
).
6.
T.
Fukuma
and
R.
Garcia
,
ACS Nano
12
,
11785
11797
(
2018
).
7.
M.
Watkins
and
B.
Reischi
,
J. Chem. Phys.
138
,
154703
(
2013
).
8.
K.
Miyazawa
,
N.
Kobayashi
,
M.
Watkins
,
A. L.
Shluger
,
K.
Amano
, and
T.
Fukuma
,
Nanoscale
8
,
7334
(
2016
).
9.
W.
van Megen
and
I.
Snook
,
J. Chem. Soc., Faraday Trans. 2
75
,
1095
(
1979
).
10.
I.
Snook
and
W.
van Megen
,
J. Chem. Phys.
72
,
2907
(
1980
).
11.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
J. Phys. Chem. B
101
,
4013
(
1997
).
12.
K.
Amano
,
K.
Suzuki
,
T.
Fukuma
,
O.
Takanashi
, and
H.
Onishi
,
J. Chem. Phys.
139
,
224710
(
2013
).
13.
P.
Tarazona
,
J. A.
Cuesta
, and
Y.
Martinez-Raton
,
Lect. Notes Phys.
753
,
247
(
2008
).
14.
15.
16.
D.
Martin-Jimenez
,
E.
Chacon
,
P.
Tarazona
, and
R.
Garcia
,
Nat. Commun.
7
,
12164
(
2016
).
17.
G.
Brekke-Svaland
and
F.
Bresme
,
J. Phys. Chem. C
122
,
7321
(
2018
).
18.
R.-G.
Xu
and
Y.
Leng
,
J. Chem. Phys.
144
,
154702
(
2016
).
19.
X.
Hu
,
W.
Nanney
,
K.
Umeda
,
T.
Ye
, and
A.
Martini
,
Langmuir
34
,
9627
(
2018
).
20.
R.
Evans
,
J. Phys.: Condens. Matter
2
,
8989
(
1990
).
21.
L.
Gelb
,
K.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
22.
F.
Kavek
,
J.
Ally
,
M.
Kappl
, and
H.-J.
Butt
,
Langmuir
30
,
11619
(
2014
).
23.
J. A.
White
and
R.
Evans
,
J. Phys.: Condens. Matter
2
,
2435
(
1990
).
24.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Elsevier
,
2013
).
25.
J. N.
Israelachvili
and
P. M.
McGuiggan
,
Science
241
,
795
(
1988
).
26.
R.
Evans
,
J.
Henderson
,
D.
Houyle
,
A.
Parry
, and
Z. A.
Sabeur
,
Mol. Phys.
80
,
755
(
1993
).
27.
F. J.
Giessibl
,
Phys. Rev. B
56
,
16010
(
1997
).
28.
J. K.
Percus
,
J. Stat. Phys.
15
,
505
(
1976
).
You do not currently have access to this content.