Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O–O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.

1.
M. F.
Chaplin
, Water Structure and Science,
2017
, http://www.lsbu.ac.uk/water/index.html.
2.
L. G. M.
Pettersson
,
R. H.
Henchman
, and
A.
Nilsson
, “
Introduction: Water the most anomalous liquid
,”
Chem. Rev.
116
,
7459
7461
(
2016
).
3.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
H.
Tanaka
 et al, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
4.
P. G.
Debenedetti
, “
Supercooled and glassy water
,”
J. Phys.: Condens. Matter
15
,
R1669
R1726
(
2003
).
5.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
6.
T.
Fransson
,
Y.
Harada
,
N.
Kosugi
,
N. A.
Besley
,
B.
Winter
,
J.
Rehr
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
X-ray and electron spectroscopy of water
,”
Chem. Rev.
116
,
7551
7569
(
2016
).
7.
J. A.
Sellberg
,
C.
Huang
,
T. A.
McQueen
,
N. D.
Loh
,
H.
Laksmono
,
D.
Schlesinger
,
R. G.
Sierra
,
D.
Nordlund
,
C. Y.
Hampton
,
D.
Starodub
 et al, “
Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
,”
Nature
510
,
381
384
(
2014
).
8.
K.-H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
 et al, “
Maxima in the thermodynamic response and correlation functions of deeply supercooled water
,”
Science
358
,
1589
1593
(
2017
).
9.
A.
Nilsson
,
S.
Schreck
,
F.
Perakis
, and
L. G. M.
Pettersson
, “
Probing water with X-ray lasers
,”
Adv. Phys.: X
1
,
226
245
(
2016
).
10.
F.
Perakis
,
G.
Camisasca
,
T. J.
Lane
,
A.
Späh
,
K. T.
Wikfeldt
,
J. A.
Sellberg
,
F.
Lehmkühler
,
H.
Pathak
,
K.-H.
Kim
,
K.
Amann-Winkel
 et al, “
Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics
,”
Nat. Commun.
9
,
1917
(
2018
).
11.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
, “
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
,”
Chem. Rev.
116
,
7501
7528
(
2016
).
12.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
13.
H.
Pathak
,
A.
Späh
,
K.-H.
Kim
,
I.
Tsironi
,
D.
Mariedahl
,
M.
Blanco
,
S.
Huotari
,
V.
Honkimäki
, and
A.
Nilsson
,
J. Chem. Phys.
150
,
224506
(
2019
).
14.
J.
Russo
and
H.
Tanaka
, “
Understanding water’s anomalies with locally favoured structures
,”
Nat. Commun.
5
,
3556
(
2014
).
15.
R.
Shi
,
J.
Russo
, and
H.
Tanaka
, “
Common microscopic structural origin for water’s thermodynamic and dynamic anomalies
,”
J. Chem. Phys.
149
,
224502
(
2018
).
16.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
, “
Phase-behavior of metastable water
,”
Nature
360
,
324
328
(
1992
).
17.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled and glassy water
,”
Nature
396
,
329
335
(
1998
).
18.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
, “
An apparently 1st-order transition between 2 amorphous phases of ice induced by pressure
,”
Nature
314
,
76
78
(
1985
).
19.
O.
Mishima
, “
Reversible first-order transition between two H2O amorphs at ∼0.2 GPa and ∼135 K
,”
J. Chem. Phys.
100
,
5910
5912
(
1994
).
20.
S.
Klotz
,
T.
Strässle
,
R. J.
Nelmes
,
J. S.
Loveday
,
G.
Hamel
,
G.
Rousse
,
B.
Canny
,
J. C.
Chervin
, and
A.
Saitta
, “
Nature of the polyamorphic transition in ice under pressure
,”
Phys. Rev. Lett.
94
,
025506
(
2005
).
21.
F.
Perakis
,
K.
Amann-Winkel
,
F.
Lehmkühler
,
M.
Sprung
,
D.
Pettersson
,
J. A.
Sellberg
,
H.
Pathak
,
A.
Späh
,
F.
Cavalca
,
D.
Schlesinger
 et al, “
Diffusive dynamics during the high- to low-density transition in amorphous ices
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8193
8198
(
2017
).
22.
C.
Lin
,
J. S.
Smith
,
S. V.
Sinogeikin
, and
G.
Shen
, “
Experimental evidence of low-density liquid water upon rapid decompression
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
2010
2015
(
2018
).
23.
C. A.
Angell
,
W. J.
Sichina
, and
M.
Oguni
, “
Heat capacity of water at extremes of supercooling and superheating
,”
J. Phys. Chem.
86
,
998
1002
(
1982
).
24.
H.
Kanno
and
C. A.
Angell
, “
Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits
,”
J. Chem. Phys.
70
,
4008
(
1979
).
25.
R. J.
Speedy
and
C. A.
Angell
, “
Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C
,”
J. Chem. Phys.
65
,
851
858
(
1976
).
26.
A.
Nilsson
and
L. G. M.
Pettersson
, “
The structural origin of anomalous properties of liquid water
,”
Nat. Commun.
6
,
8998
(
2015
).
27.
Y.
Liu
,
J. C.
Palmer
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Liquid-liquid transition in ST2 water
,”
J. Chem. Phys.
137
,
214505
(
2012
).
28.
J. C.
Palmer
,
R.
Car
, and
P. G.
Debenedetti
, “
The liquid-liquid transition in supercooled ST2 water: A comparison between umbrella sampling and well-tempered dynamics
,”
Faraday Discuss.
167
,
77
94
(
2013
).
29.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Metastable liquid-liquid transition in a molecular model of water
,”
Nature
510
,
385
388
(
2014
).
30.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Palmer et al. reply
,”
Nature
531
,
E2
E3
(
2016
).
31.
T. A.
Kesselring
,
G.
Franzese
,
S. V.
Buldyrev
,
H. J.
Herrmann
, and
H. E.
Stanley
, “
Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point
,”
Sci. Rep.
2
,
474
(
2012
).
32.
T. A.
Kesselring
,
E.
Lascaris
,
G.
Franzese
, and
H. E.
Stanley
, “
Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization
,”
J. Chem. Phys.
138
,
244506
(
2013
).
33.
D. T.
Limmer
and
D.
Chandler
, “
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water
,”
J. Chem. Phys.
135
,
134503
(
2011
).
34.
D. T.
Limmer
and
D.
Chandler
, “
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II
,”
J. Chem. Phys.
138
,
214504
(
2013
).
35.
J. C.
Palmer
,
A.
Haji-Akbari
,
R. S.
Singh
,
F.
Martelli
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Comment on ‘The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water’ [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]
,”
J. Chem. Phys.
148
,
137101
(
2018
).
36.
J. C.
Palmer
,
P. H.
Poole
,
F.
Sciortino
, and
P. G.
Debenedetti
, “
Advances in computational studies of the liquid–liquid transition in water and water-like models
,”
Chem. Rev.
118
,
9129
9151
(
2018
).
37.
J. W.
Biddle
,
R. S.
Singh
,
E. M.
Sparano
,
F.
Ricci
,
M. A.
González
,
C.
Valeriani
,
J. L. F.
Abascal
,
P. G.
Debenedetti
,
M. A.
Anisimov
, and
F.
Caupin
, “
Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions
,”
J. Chem. Phys.
146
,
034502
(
2017
).
38.
R. S.
Singh
,
J. W.
Biddle
,
P. G.
Debenedetti
, and
M. A.
Anisimov
, “
Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water
,”
J. Chem. Phys.
144
,
144504
(
2016
).
39.
V.
Holten
and
M. A.
Anisimov
, “
Entropy-driven liquid–liquid separation in supercooled water
,”
Sci. Rep.
2
,
713
(
2012
).
40.
Q.
Sun
, “
Raman spectroscopic study of the effects of dissolved NaCl on water structure
,”
Vib. Spectrosc.
62
,
110
114
(
2012
).
41.
Q.
Sun
, “
Local statistical interpretation for water structure
,”
Chem. Phys. Lett.
568-569
,
90
94
(
2013
).
42.
G. E.
Walrafen
,
M. R.
Fisher
,
M. S.
Hokmabadi
, and
W.-H.
Yang
, “
Temperature dependence of the low- and high-frequency Raman scattering from liquid water
,”
J. Chem. Phys.
85
,
6970
6982
(
1986
).
43.
G. E.
Walrafen
,
M. S.
Hokmabadi
, and
W.-H.
Yang
, “
Raman isosbestic points from liquid water
,”
J. Chem. Phys.
85
,
6964
6969
(
1986
).
44.
P. L.
Geissler
, “
Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points
,”
J. Am. Chem. Soc.
127
,
14930
14935
(
2005
).
45.
J. D.
Smith
,
C. D.
Cappa
,
K. R.
Wilson
,
R. C.
Cohen
,
P. L.
Geissler
, and
R. J.
Saykally
, “
Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
14171
(
2005
).
46.
Y.
Maréchal
, “
The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data
,”
J. Mol. Struct.
1004
,
146
155
(
2011
).
47.
T.
Morawietz
,
O.
Marsalek
,
S. R.
Pattenaudes
,
L. M.
Streacker
,
D.
Ben-Amotz
, and
T. E.
Markland
, “
The interplay of structure and dynamics in the Raman spectrum of liquid water over the full frequency and temperature range
,”
J. Phys. Chem. Lett.
9
,
851
857
(
2018
).
48.
A.
Taschin
,
P.
Bartolini
,
R.
Eramo
,
R.
Righini
, and
R.
Torre
, “
Evidence of two distinct local structures of water from ambient to supercooled conditions
,”
Nat. Commun.
4
,
2401
(
2013
).
49.
A.
Nilsson
,
D.
Nordlund
,
I.
Waluyo
,
N.
Huang
,
H.
Ogasawara
,
S.
Kaya
,
U.
Bergmann
,
L.-Å.
Näslund
,
H.
Öström
,
P.
Wernet
 et al, “
X-ray absorption spectroscopy and X-ray Raman scattering of water; an experimental view
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
99
129
(
2010
).
50.
D.
Nordlund
,
H.
Ogasawara
,
K. J.
Andersson
,
M.
Tatarkhanov
,
M.
Salmerón
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Sensitivity of X-ray absorption spectroscopy to hydrogen bond topology
,”
Phys. Rev. B
80
,
233404
(
2009
).
51.
J. A.
Sellberg
,
S.
Kaya
,
V. H.
Segtnan
,
C.
Chen
,
T.
Tyliszczak
,
H.
Ogasawara
,
D.
Nordlund
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section
,”
J. Chem. Phys.
141
,
034507
(
2014
).
52.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. Å.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
 et al, “
The structure of the first coordination shell in liquid water
,”
Science
304
,
995
999
(
2004
).
53.
J.
Niskanen
,
C. J.
Sahle
,
K.
Gilmore
,
F.
Uhlig
,
J.
Smiatek
, and
A.
Föhlisch
, “
Disentangling structural information from core-level excitation spectra
,”
Phys. Rev. E
96
,
013319
(
2017
).
54.
C. J.
Sahle
,
C.
Sternemann
,
C.
Schmidt
,
S.
Lehtola
,
S.
Jahn
,
L.
Simonelli
,
S.
Huotari
,
M.
Hakala
,
T.
Pylkkänen
,
A.
Nyrow
 et al, “
Microscopic structure of water at elevated pressures and temperatures
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6301
6306
(
2013
).
55.
S.
Myneni
,
Y.
Luo
,
L.-Å.
Näslund
,
M.
Cavalleri
,
L.
Ojamäe
,
H.
Ogasawara
,
A.
Pelmenschikov
,
P.
Wernet
,
P.
Väterlein
,
C.
Heske
 et al, “
Spectroscopic probing of local hydrogen bonding structures in liquid water
,”
J. Phys.: Condens. Matter
14
,
L213
L219
(
2002
).
56.
O.
Fuchs
,
M.
Zharnikov
,
L.
Weinhardt
,
M.
Blum
,
M.
Weigand
,
Y.
Zubavichus
,
M.
Bär
,
F.
Maier
,
J. D.
Denlinger
,
C.
Heske
 et al, “
Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy
,”
Phys. Rev. Lett.
100
,
027801
(
2008
).
57.
L.
Weinhardt
,
O.
Fuchs
,
M.
Blum
,
M.
Bär
,
M.
Weigand
,
J. D.
Denlinger
,
Y.
Zubavichus
,
M.
Zharnikov
,
M.
Grunze
,
C.
Heske
 et al, “
Resonant X-ray emission spectroscopy of liquid water: Novel instrumentation, high resolution, and the ‘map’ approach
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
206
211
(
2010
).
58.
Y.
Harada
,
J.
Miyawaki
,
H.
Niwa
,
K.
Yamazoe
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Probing the OH stretch in different local environments in liquid water
,”
J. Phys. Chem. Lett.
8
,
5487
5491
(
2017
).
59.
Y.
Harada
,
T.
Tokushima
,
Y.
Horikawa
,
O.
Takahashi
,
H.
Niwa
,
M.
Kobayashi
,
M.
Oshima
,
Y.
Senba
,
H.
Ohashi
,
K. T.
Wikfeldt
 et al, “
Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering
,”
Phys. Rev. Lett.
111
,
193001
(
2013
).
60.
C.
Huang
,
K. T.
Wikfeldt
,
T.
Tokushima
,
D.
Nordlund
,
Y.
Harada
,
U.
Bergmann
,
M.
Niebuhr
,
T. M.
Weiss
,
Y.
Horikawa
,
M.
Leetmaa
 et al, “
The inhomogeneous structure of water at ambient conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15214
15218
(
2009
).
61.
T.
Tokushima
,
Y.
Harada
,
Y.
Horikawa
,
O.
Takahashi
,
Y.
Senba
,
H.
Ohashi
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
S.
Shin
, “
High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
192
205
(
2010
).
62.
T.
Tokushima
,
Y.
Harada
,
O.
Takahashi
,
Y.
Senba
,
H.
Ohashi
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
S.
Shin
, “
High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs
,”
Chem. Phys. Lett.
460
,
387
400
(
2008
).
63.
T.
Tokushima
,
Y.
Horikawa
,
H.
Arai
,
Y.
Harada
,
O.
Takahashi
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
S.
Shin
, “
Polarization dependent resonant x-ray emission spectroscopy of D2O and H2O water: Assignment of the local molecular orbital symmetry
,”
J. Chem. Phys.
136
,
044517
(
2012
).
64.
J.
Forsberg
,
J.
Gråsjö
,
B.
Brena
,
J.
Nordgren
,
L. C.
Duda
, and
J. E.
Rubensson
, “
Angular anisotropy of resonant inelastic soft x-ray scattering from liquid water
,”
Phys. Rev. B
79
,
132203
(
2009
).
65.
J. H.
Guo
,
Y.
Luo
,
A.
Augustsson
,
J. E.
Rubensson
,
C.
Såthe
,
H.
Ågren
,
H.
Siegbahn
, and
J.
Nordgren
, “
X-ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water
,”
Phys. Rev. Lett.
89
,
137402
(
2002
).
66.
S.
Kashtanov
,
A.
Augustsson
,
Y.
Luo
,
J. H.
Guo
,
C.
Såthe
,
J. E.
Rubensson
,
H.
Siegbahn
,
J.
Nordgren
, and
H.
Ågren
, “
Local structures of liquid water studied by x-ray emission spectroscopy
,”
Phys. Rev. B
69
,
024201
(
2004
).
67.
K. M.
Lange
,
R.
Könecke
,
S.
Ghadimi
,
R.
Golnak
,
M. A.
Soldatov
,
K. F.
Hodeck
,
A.
Soldatov
, and
E. F.
Aziz
, “
High resolution X-ray emission spectroscopy of water and aqueous ions using the micro-jet technique
,”
Chem. Phys.
377
,
1
5
(
2010
).
68.
K. M.
Lange
,
R.
Könnecke
,
M.
Soldatov
,
R.
Golnak
,
J. E.
Rubensson
,
A.
Soldatov
, and
E. F.
Aziz
, “
On the origin of the hydrogen-bond-network nature of water: X-ray absorption and emission spectra of water-acetonitrile mixtures
,”
Angew. Chem.
123
,
10809
10813
(
2011
).
69.
K. M.
Lange
,
M.
Soldatov
,
R.
Golnak
,
M.
Gotz
,
N.
Engel
,
R.
Könnecke
,
J.-E.
Rubensson
, and
E. F.
Aziz
, “
X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics
,”
Phys. Rev. B
85
,
155104
(
2012
).
70.
G. N. I.
Clark
,
C. D.
Cappa
,
J. D.
Smith
,
R. J.
Saykally
, and
T.
Head-Gordon
, “
The structure of ambient water
,”
Mol. Phys.
108
,
1415
1433
(
2010
).
71.
J. D.
Smith
,
C. D.
Cappa
,
B. M.
Messer
,
R. C.
Cohen
, and
R. J.
Saykally
, “
Response to ‘Comment on ‘Energetics of hydrogen bond network rearrangements in liquid water
,””
Science
308
,
793b
(
2005
).
72.
J. D.
Smith
,
C. D.
Cappa
,
K. R.
Wilson
,
B. M.
Messer
,
R. C.
Cohen
, and
R. J.
Saykally
, “
Energetics of hydrogen bond rearrangements in liquid water
,”
Science
306
,
851
(
2004
).
73.
O.
Fuchs
,
M.
Zharnikov
,
L.
Weinhardt
,
M.
Blum
,
M.
Weigand
,
Y.
Zubavichus
,
M.
Bär
,
F.
Maier
,
J. D.
Denlinger
,
C.
Heske
 et al, “
Reply to ‘Comment on ‘Isotope and temperature effects in liquid water probed by X-ray absorption and resonant X-ray emission spectroscopy
,””
Phys. Rev. Lett.
100
,
249802
(
2008
).
74.
A.
Nilsson
,
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L.-Å.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
 et al, “
Comment on ‘Energetics of hydrogen bond network rearrangements in liquid water
,’”
Science
308
,
793a
(
2005
).
75.
L. G. M.
Pettersson
,
T.
Tokushima
,
Y.
Harada
,
O.
Takahashi
,
S.
Shin
, and
A.
Nilsson
, “
Comment on ‘Isotope and temperature effects in liquid water probed by X-ray absorption and resonant X-ray emission spectroscopy
,’”
Phys. Rev. Lett.
100
,
249801
(
2008
).
76.
G. N. I.
Clark
,
G.
Hura
,
J.
Teixeira
,
A. K.
Soper
, and
T.
Head-Gordon
, “
Small-angle scattering and the structure of ambient liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14003
14007
(
2010
).
77.
T.
Head-Gordon
and
M. E.
Johnson
, “
Tetrahedral structure or chains for liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
7973
7977
(
2006
).
78.
T.
Head-Gordon
and
M. E.
Johnson
, “
Correction for Head-Gordon et al., Tetrahedral structure or chains for liquid water
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
16614
(
2006
).
79.
T.
Head-Gordon
and
S. W.
Rick
, “
Consequences of chain networks on thermodynamic, dielectric and structural properties for liquid water
,”
Phys. Chem. Chem. Phys.
9
,
83
91
(
2007
).
80.
A. K.
Soper
,
J.
Teixeira
, and
T.
Head-Gordon
, “
Is ambient water inhomogeneous on the nanometer-length scale?
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
E44
(
2010
).
81.
A. K.
Soper
, “
Recent water myths
,”
Pure Appl. Chem.
82
,
1855
1867
(
2010
).
82.
J.
Niskanen
,
M.
Fondell
,
C. J.
Sahle
,
S.
Eckert
,
R. M.
Jay
,
K.
Gilmore
,
A.
Pietzsch
,
M.
Dantz
,
X.
Lu
,
D. E.
McNally
 et al, “
Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
4058
4063
(
2019
).
83.
L. G. M.
Pettersson
,
Y.
Harada
, and
A.
Nilsson
, “
Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions?
,”
Proc. Natl. Acad. Sci. U. S. A.
(submitted).
84.
J. R.
Scherer
,
M. K.
Go
, and
S.
Kint
, “
Raman spectra and structure of water from −10 to 90°
,”
J. Phys. Chem.
78
,
1304
1312
(
1974
).
85.
A.
Nilsson
,
C.
Huang
, and
L. G. M.
Pettersson
, “
Fluctuations in ambient water
,”
J. Mol. Liq.
176
,
2
16
(
2012
).
86.
L. B.
Skinner
,
C. J.
Benmore
,
J. C.
Neuefeind
, and
J. B.
Parise
, “
The structure of water around the compressibility minimum
,”
J. Chem. Phys.
141
,
214507
(
2014
).
87.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range
,”
J. Chem. Phys.
138
,
074506
(
2013
).
88.
D.
Schlesinger
,
K. T.
Wikfeldt
,
L. B.
Skinner
,
C. J.
Benmore
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
,”
J. Chem. Phys.
145
,
084503
(
2016
).
89.
W. C.
Röntgen
, “
Über die constitution des flüssigen Wassers
,”
Ann. Phys.
281
,
91
97
(
1892
).
90.
C.
Huang
,
T. M.
Weiss
,
D.
Nordlund
,
K. T.
Wikfeldt
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Increasing correlation length in bulk supercooled H2O, D2O and NaCl solution determined from small angle x-ray scattering
,”
J. Chem. Phys.
133
,
134504
(
2010
).
91.
L.
Pauling
, in
Hydrogen Bonding
, edited by
D.
Hadži
(
Pergamon Press
,
1959
), pp.
1
6
.
92.
G. E.
Walrafen
,
W.-H.
Yang
, and
Y. C.
Chu
, “
Raman evidence for the clathratelike structure of highly supercooled water
,”
ACS Symp. Ser.
676
,
287
308
(
1997
).
93.
H.
Yokoyama
,
M.
Kannami
, and
H.
Kanno
, “
Existence of clathrate-like structures in supercooled water: X-ray diffraction evidence
,”
Chem. Phys. Lett.
463
,
99
102
(
2008
).
94.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
95.
R. J.
Speedy
, “
Self-replicating structures in water
,”
J. Phys. Chem.
88
,
3364
3373
(
1984
).
96.
B.
Santra
,
R. A.
DiStasio
, Jr.
,
F.
Martelli
, and
R.
Car
, “
Local structure analysis in ab initio liquid water
,”
Mol. Phys.
113
,
2829
2841
(
2015
).
97.
M.
Mandziuk
, “
From the trimer, through the pentamer, to liquid water
,”
J. Mol. Struct.
1177
,
168
176
(
2019
).
98.
F.
Martelli
, “
Unravelling the contribution of local structures to the anomalies of water: The synergistic action of several factors
,”
J. Chem. Phys.
150
,
094506
(
2019
).
99.
H.
Shintani
and
H.
Tanaka
, “
Frustration on the way to crystallization in glass
,”
Nat. Phys.
2
,
200
206
(
2006
).
100.
D. J.
Anick
, “
Atypical water lattices and their possible relevance to the amorphous ices: A density functional study
,”
AIP Adv.
3
,
042119
(
2013
).
101.
E.
Shiratani
and
M.
Sasai
, “
Growth and collapse of structural patterns in the hydrogen bond network in liquid water
,”
J. Chem. Phys.
104
,
7671
7680
(
1996
).
102.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
 et al, gaussian 16, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
103.
J. D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
104.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
,
6378
6396
(
2009
).
105.
P.
Norman
,
D. M.
Bishop
,
H. J. A.
Jensen
, and
J.
Oddershede
, “
Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations
,”
J. Chem. Phys.
115
,
10323
10334
(
2001
).
106.
P.
Norman
,
D. M.
Bishop
,
H. J. A.
Jensen
, and
J.
Oddershede
, “
Nonlinear response theory with relaxation: The first-order hyperpolarizability
,”
J. Chem. Phys.
123
,
194103
(
2005
).
107.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
 et al, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2014
).
108.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the coulomb-attenuating method
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
109.
U.
Ekström
and
P.
Norman
, “
X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach
,”
Phys. Rev. A
74
,
042722
(
2006
).
110.
U.
Ekström
,
P.
Norman
,
V.
Carravetta
, and
H.
Ågren
, “
Polarization propagator for X-ray spectra
,”
Phys. Rev. Lett.
97
,
143001
(
2006
).
111.
W.
Kutzelnigg
,
U.
Fleischer
, and
M.
Schindler
,
NMR-Basic Principles and Progress
(
Springer Verlag
,
1990
).
112.
A.
Bergner
,
M.
Dolg
,
W.
Kuechle
,
H.
Stoll
, and
H.
Preuß
, “
Ab initio energy-adjusted pseudopotentials for elements of groups 13–17
,”
Mol. Phys.
80
,
1431
1441
(
1993
).
113.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
, “
Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation
,”
Can. J. Chem.
70
,
560
(
1992
).
114.
T.
Fransson
,
I.
Zhovtobriukh
,
S.
Coriani
,
K. T.
Wikfeldt
,
P.
Norman
, and
L. G. M.
Pettersson
, “
Requirements on first-principles calculations of X-ray absorption spectra of liquid water
,”
Phys. Chem. Chem. Phys.
18
,
566
583
(
2016
).
115.
H.
Ågren
,
V.
Carravetta
,
O.
Vahtras
, and
L. G. M.
Pettersson
, “
Direct SCF direct static-exchange calculations of electronic spectra
,”
Theor. Chem. Acc.
97
,
14
40
(
1997
).
116.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol. I.
117.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm-Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
118.
Y. H.
Shao
,
Z. T.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X. T.
Feng
 et al, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
119.
J. D.
Wadey
and
N. A.
Besley
, “
Quantum chemical calculations of x-ray emission spectroscopy
,”
J. Chem. Theory Comput.
10
,
4557
4564
(
2014
).
120.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
121.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
122.
K. T.
Wikfeldt
,
C.
Huang
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water
,”
J. Chem. Phys.
134
,
214506
(
2011
).
123.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
, “
Isothermal-isobaric molecular dynamics using stochastic velocity rescaling
,”
J. Chem. Phys.
130
,
074101
(
2009
).
124.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
125.
I.
Zhovtobriukh
,
N. A.
Besley
,
T.
Fransson
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water
,”
J. Chem. Phys.
148
,
144507
(
2018
).
126.
A.
Nilsson
and
L. G. M.
Pettersson
, “
Perspective on the structure of liquid water
,”
Chem. Phys.
389
,
1
34
(
2011
).
127.
H.
Tanaka
, “
Simple physical model of liquid water
,”
J. Chem. Phys.
112
,
799
809
(
2000
).
128.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a first principles water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
129.
G. R.
Medders
,
A. W.
Götz
,
M. A.
Morales
,
P.
Bajaj
, and
F.
Paesani
, “
On the representation of many-body interactions in water
,”
J. Chem. Phys.
143
,
104102
(
2015
).
130.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
131.
F. K.
Gel’mukhanov
,
L. N.
Mazalov
, and
A. V.
Kondratenko
, “
A theory of vibrational structure in the X-ray spectra of molecules
,”
Chem. Phys. Lett.
46
,
133
(
1977
).
132.
M. P.
Ljungberg
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum
,”
J. Chem. Phys.
134
,
044513
(
2011
).
133.
A.
Nilsson
,
T.
Tokushima
,
Y.
Horikawa
,
Y.
Harada
,
M. P.
Ljungberg
,
S.
Shin
, and
L. G. M.
Pettersson
, “
Resonant inelastic x-ray scattering of water
,”
J. Electron Spectrosc. Relat. Phenom.
188
,
84
100
(
2013
).
134.
M.
Neeb
,
J. E.
Rubensson
,
M.
Biermann
, and
W.
Eberhardt
, “
Coherent excitation of vibrational wave-functions observed in core hole decay spectra of O2, N2 and CO
,”
J. Electron Spectrosc. Relat. Phenom.
67
,
261
274
(
1994
).
135.
M. P.
Ljungberg
,
I.
Zhovtobriukh
,
O.
Takahashi
, and
L. G. M.
Pettersson
, “
Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol
,”
J. Chem. Phys.
146
,
134506
(
2017
).
136.
O.
Takahashi
,
M. P.
Ljungberg
, and
L. G. M.
Pettersson
, “
X-ray emission spectrum of liquid ethanol: Origin of split peaks
,”
J. Phys. Chem. B
121
,
11163
11168
(
2017
).
137.
M.
Odelius
, “
Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice
,”
Phys. Rev. B
79
,
144204
(
2009
).
138.
M.
Odelius
, “
Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water
,”
J. Phys. Chem. A
113
,
8176
8181
(
2009
).
139.
V.
Vaz da Cruz
,
F.
Gel’mukhanov
,
S.
Eckert
,
M.
Iannuzzi
,
E.
Ertan
,
A.
Pietzsch
,
R. C.
Couto
,
J.
Niskanen
,
M.
Fondell
,
M.
Dantz
 et al, “
Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering
,”
Nat. Commun.
10
,
1013
(
2019
).
140.
K.
Yamazoe
,
J.
Miyawaki
,
H.
Niwa
,
A.
Nilsson
, and
Y.
Harada
, “
Measurements of ultrafast dissociation in resonant inelastic X-ray scattering of water
,”
J. Chem. Phys.
150
,
204201
(
2019
).
141.
M.
Leetmaa
,
M. P.
Ljungberg
,
A. P.
Lyubartsev
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
135
157
(
2010
).
142.
L.
Kong
,
X.
Wu
, and
R.
Car
, “
Roles of quantum nuclei and inhomogeneous screening in the x-ray absorption spectra of water and ice
,”
Phys. Rev. B
86
,
134203
(
2012
).
143.
M.
Cavalleri
,
H.
Ogasawara
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
The interpretation of x-ray absorption spectra in water and ice
,”
Chem. Phys. Lett.
364
,
363
(
2002
).
144.
S.
McDonald
,
L.
Ojamäe
, and
S. J.
Singer
, “
Graph theoretical generation and analysis of hydrogen-bonded structures with applications to the neutral and protonated water cube and dodecahedral clusters
,”
J. Phys. Chem. A
102
,
2824
2832
(
1998
).
145.
A.
Lenz
and
L.
Ojamäe
, “
A theoretical study of water clusters: The relation between hydrogen-bond topology and interaction energy from quantum-chemical computations for clusters with up to 22 molecules
,”
Phys. Chem. Chem. Phys.
7
,
1905
1911
(
2005
).
146.
F. H.
Stillinger
, “
Water revisited
,”
Science
209
,
451
457
(
1980
).
147.
H.
Kanno
,
H.
Yokoyama
, and
Y.
Yoshimura
, “
A new interpretation of anomalous properties of water based on Stillinger’s postulate
,”
J. Phys. Chem. B
105
,
2019
2026
(
2001
).
148.
D.
Liu
,
Y.
Zhang
,
C.-C.
Chen
,
C.-Y.
Mou
,
P. H.
Poole
, and
S.-H.
Chen
, “
Observation of the density minimum in deeply supercooled confined water
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
9570
(
2007
).
149.
C.
Huang
,
K. T.
Wikfeldt
,
T.
Tokushima
,
D.
Nordlund
,
Y.
Harada
,
U.
Bergmann
,
M.
Niebuhr
,
T. M.
Weiss
,
Y.
Horikawa
,
M.
Leetmaa
 et al, “
Reply to Soper et al. ‘Fluctuations in water around a bimodal distribution of local hydrogen bonded structural motifs
,’”
Proc. Natl. Acad. Sci. U. S. A.
107
,
E45
(
2010
).
150.
U. R.
Pedersen
, “
Statistics of small length scale density fluctuations in supercooled viscous liquids
,”
J. Chem. Phys.
150
,
094505
(
2019
).
151.
E.
Donth
, “
The size of cooperatively rearranging regions at the glass transition
,”
J. Non-Cryst. Solids
53
,
325
330
(
1982
).
152.
J. E.
Hallett
,
F.
Turci
, and
C. P.
Royall
, “
Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations
,”
Nat. Commun.
9
,
3272
(
2018
).
153.
C. P.
Royall
,
R. W.
Stephen
,
T.
Ohtsuka
, and
H.
Tanaka
, “
Direct observation of a local structural mechanism for dynamic arrest
,”
Nat. Mater.
7
,
556
561
(
2008
).
154.
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,”
Eur. Phys. J. E
35
,
113
(
2012
).
155.
R.
Pastore
,
A.
Coniglio
, and
M. P.
Ciamarra
, “
Dynamic phase coexistence in glass–forming liquids
,”
Sci. Rep.
5
,
11770
(
2015
).
156.
J. L.
Kuo
,
J. V.
Coe
,
S. J.
Singer
,
Y. B.
Band
, and
L.
Ojamäe
, “
On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice
,”
J. Chem. Phys.
114
,
2527
2540
(
2001
).
157.
K. T.
Wikfeldt
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Spatially inhomogeneous bimodal inherent structure in simulated liquid water
,”
Phys. Chem. Chem. Phys.
13
,
19918
19924
(
2011
).
158.
K. T.
Wikfeldt
,
M.
Leetmaa
,
A.
Mace
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Oxygen-oxygen correlations in liquid water; addressing the discrepancy between diffraction and EXAFS using a novel multiple-data set fitting technique
,”
J. Chem. Phys.
132
,
104513
(
2010
).

Supplementary Material

You do not currently have access to this content.