A dual-capillary apparatus was developed for highly accurate measurements of density of liquids, including the supercooled liquid region. The device was used to determine the density of supercooled heavy water in the temperature range from 254 K to 298 K at pressures ranging from atmospheric to 100 MPa, relative to density at reference isotherm 298.15 K. The measurements of relative density were reproducible within 10 ppm, and their expanded (k = 2) uncertainty was within 50 ppm. To obtain absolute values of density, thermodynamic integration was performed using recent accurate speed of sound measurements in the stable liquid region. An empirical equation of state (EoS) was developed, giving specific volume as a rational function of pressure and temperature. The new experimental data are represented by EoS within their experimental uncertainty. Gibbs energy was obtained by EoS integration allowing computation of all thermodynamic properties of heavy water using Gibbs energy derivatives. Although based on data in relatively narrow temperature and pressure ranges, the developed EoS shows an excellent agreement with literature data for densities, isothermal compressibilities, and isobaric expansivities of deeply supercooled heavy water. The curvature of the thermodynamic surface steeply increases toward low temperatures and low pressures, thus supporting the existence of the hypothesized liquid-liquid coexistence boundary in a close vicinity of existing experimental data.

1.
A. S.
Bain
 et al,
Canada Enters the Nuclear Age: A Technical History of Atomic Energy of Canada Limited as Seen from Its Research Laboratories
(
McGill-Queen’s University Press
,
1997
).
2.
Y. J.
Kim
,
B. E.
Wyslouzil
,
G.
Wilemski
,
J.
Wölk
, and
R.
Strey
,
J. Phys. Chem. A
108
,
4365
(
2004
).
3.
H.
Pathak
,
A.
Obeidat
,
G.
Wilemski
, and
B.
Wyslouzil
,
J. Chem. Phys.
140
,
224318
(
2014
).
4.
F.
Caupin
,
J. Non-Cryst. Solids
407
,
441
(
2015
), 7th IDMRCS: Relaxation in Complex Systems.
5.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
6.
P.
Gallo
 et al,
Chem. Rev.
116
,
7463
(
2016
).
7.
O.
Mishima
,
Phys. Rev. Lett.
85
,
334
(
2000
).
8.
H.
Kanno
and
C. A.
Angell
,
J. Chem. Phys.
73
,
1940
(
1980
).
9.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
84
,
5085
(
1986
).
10.
R.
Romeo
,
S.
Lago
, and
P. A.
Giuliano Albo
,
J. Chem. Phys.
149
,
154503
(
2018
).
11.
P. G.
Hill
,
R. D. C.
MacMillan
, and
V.
Lee
,
J. Phys. Chem. Ref. Data
11
,
1
(
1982
).
12.
S.
Herrig
,
M.
Thol
,
A. H.
Harvey
, and
E. W.
Lemmon
,
J. Phys. Chem. Ref. Data
47
,
043102
(
2018
).
13.
International Association for the Properties of Water and Steam
, IAPWS R16-17(2018), Revised Release on the IAPWS Formulation 2017 for the Thermodynamic Properties of Heavy Water, 2018.
14.
V.
Holten
,
C. E.
Bertrand
,
M. A.
Anisimov
, and
J. V.
Sengers
,
J. Chem. Phys.
136
,
094507
(
2012
).
15.
B. V.
Zheleznyi
,
Russ. J. Phys. Chem.
43
,
1311
(
1969
).
16.
T. A.
Hahn
and
R. K.
Kirby
,
AIP Conf. Proc.
3
,
13
(
1972
).
17.
W. D.
Drotning
,
Int. J. Thermophys.
9
,
849
(
1988
).
18.
H.
Aikawa
,
M.
Okaji
, and
H.
Imai
,
J. Soc. Instrum. Cont. Eng.
29
,
1131
(
1990
).
19.
M.
Okaji
,
N.
Yamada
,
K.
Nara
, and
H.
Kato
,
Cryogenics
35
,
887
(
1995
).
20.
H. J.
McSkimin
,
J. Appl. Phys.
24
,
988
(
1953
).
21.
V.
Vinš
,
M.
Fransen
,
J.
Hykl
, and
J.
Hrubý
,
J. Phys. Chem. B
119
,
5567
(
2015
).
22.
JCGM 100:2008, Evaluation of measurement data – Guide to the expression of uncertainty in measurement, 2008.
23.
G. S.
Kell
,
J. Phys. Chem. Ref. Data
6
,
1109
(
1977
).
24.
F.
Fehres
and
S.
Rudtsch
, personal communication (
2018
).
25.
W. D.
Wilson
,
J. Acoust. Soc. Am.
33
,
314
(
1961
).
26.
R.
Wegge
,
M.
Richter
, and
R.
Span
,
Fluid Phase Equilib.
418
,
175
(
2016
), special issue covering the Nineteenth Symposium on Thermophysical Properties.
27.
International Association for the Properties of Water and Steam
, IAPWS G5-01(2016), Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water, 2016.
28.
W.
Wagner
and
A.
Pruß
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
29.
International Association for the Properties of Water and Steam
, IAPWS R6-95(2018), Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, 2018.
30.
H.
Moreau
,
Metrologia
1
,
27
(
1965
).
31.
D. H.
Rasmussen
and
A. P.
MacKenzie
,
J. Chem. Phys.
59
,
5003
(
1973
).
32.
G. S.
Kell
,
J. Chem. Eng. Data
12
,
66
(
1967
).
33.
B. V.
Zheleznyi
,
Russ. J. Phys. Chem.
42
,
950
(
1968
).
34.
J. V.
Leyendekkers
and
R. J.
Hunter
,
J. Chem. Phys.
82
,
1447
(
1985
).
35.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
87
,
4840
(
1987
).
36.
K.
Stokland
,
E.
Ronæss
, and
L.
Tronstad
,
Trans. Faraday Soc.
35
,
312
(
1939
).
37.
T.-L.
Chang
and
J.-Y.
Chien
,
J. Am. Chem. Soc.
63
,
1709
(
1941
).
38.
T.-L.
Chang
and
L.-H.
Tung
,
Nature
163
,
737
(
1949
).
39.
R.
Schräder
and
K.
Wirtz
,
Z. Naturforsch. A
6
,
220
(
1951
).
40.
F.
Steckel
and
S.
Szapiro
,
Trans. Faraday Soc.
59
,
331
(
1963
).
41.
F. J.
Millero
,
R.
Dexter
, and
E.
Hoff
,
J. Chem. Eng. Data
16
,
85
(
1971
).
42.
R. T.
Emmet
and
F. J.
Millero
,
J. Chem. Eng. Data
20
,
351
(
1975
).
43.
J.
Brulmans
,
J.
Verdonck
, and
H. L.
Eschbach
,
Z. Naturforsch. A
30
,
107
(
1975
).
44.
S. G.
Kudryavtsev
,
A. N.
Strakhov
,
O. V.
Ershova
, and
G. A.
Krestov
,
Zh. Fiz. Khim.
60
,
2202
(
1986
).
45.
W.
Marczak
,
J. Chem. Eng. Data
44
,
621
(
1999
).
46.
P.
Scharlin
and
K.
Steinby
,
J. Chem. Thermodyn.
35
,
279
(
2003
).
47.
E. V.
Ivanov
,
E. Y.
Lebedeva
, and
V. K.
Abrosimov
,
Thermochim. Acta
500
,
38
(
2010
).
48.
E. V.
Ivanov
,
E. Y.
Lebedeva
, and
V. K.
Abrosimov
,
Thermochim. Acta
513
,
26
(
2011
).
49.
E. V.
Ivanov
and
E. Y.
Lebedeva
,
J. Mol. Liq.
159
,
124
(
2011
).
50.
E.
Swift
,
J. Am. Chem. Soc.
61
,
198
(
1939
).
51.
M.
Ceccaldi
,
G.
Girard
,
M.
Menaché
, and
M.
Riedinger
,
Metrologia
11
,
53
(
1975
).
52.
N.
Tsederberg
,
A.
Aleksandrov
, and
T.
Khasanshin
,
Therm. Eng.
19
,
96
(
1972
).
53.
A. A.
Aleksandrov
,
T. S.
Khasanshin
, and
D. K.
Larkin
,
Zh. Fiz. Khim.
50
,
394
(
1976
).
54.
P. W.
Bridgman
,
J. Chem. Phys.
3
,
597
(
1935
).
55.
R. A.
Fine
and
F. J.
Millero
,
J. Chem. Phys.
63
,
89
(
1975
).
56.
S. J.
Henderson
and
R. J.
Speedy
,
J. Phys. Chem.
91
,
3062
(
1987
).
57.
H.
Kanno
and
C. A.
Angell
,
J. Chem. Phys.
70
,
4008
(
1979
).
58.
E. A.
Long
and
J. D.
Kemp
,
J. Am. Chem. Soc.
58
,
1829
(
1936
).
59.
A.
Cockett
and
A.
Ferguson
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
29
,
185
(
1940
).
60.
A.
Eucken
and
M.
Eigen
,
Z. Elektrochem. Angew. Phys. Chem.
55
,
343
(
1951
).
61.
G. C.
Kresheck
,
J. Chem. Phys.
52
,
5966
(
1970
).
62.
D. H.
Rasmussen
,
J. C.
Tucker
,
C. A.
Angell
, and
J. C.
Tucker
,
Science
181
,
342
(
1973
).
63.
O.
Haida
,
H.
Suga
, and
S.
Seki
,
J. Glaciol.
22
,
155
164
(
1979
).
64.
C. A.
Angell
,
W. J.
Sichina
, and
M.
Oguni
,
J. Phys. Chem.
86
,
998
(
1982
).
65.
B. A.
Mursalov
,
I. M.
Abdulagatov
,
V. I.
Dvoryanchikov
,
A. N.
Kamalov
, and
S. B.
Kiselev
,
Int. J. Thermophys.
20
,
1497
(
1999
).
66.
N.
Smirnova
,
T.
Bykova
,
K. V.
Durme
, and
B. V.
Mele
,
J. Chem. Thermodyn.
38
,
879
(
2006
).
67.
M.
Zábranský
,
Z.
Kolská
,
V.
Růžička
, and
E. S.
Domalski
,
J. Phys. Chem. Ref. Data
39
,
013103
(
2010
).
68.
C.
Chen
and
F. J.
Millero
,
J. Acoust. Soc. Am.
62
,
553
(
1977
).
69.
J.
Jůza
,
V.
Kmoníček
,
O.
Šifner
, and
K.
Schovanec
,
Physica
32
,
362
(
1966
).

Supplementary Material

You do not currently have access to this content.