Although by now the glass transition temperature of uncrystallized bulk water is generally accepted to manifest at temperature Tg near 136 K, not much known are the spectral dispersion of the structural α-relaxation and the temperature dependence of its relaxation time τα,bulk(T). Whether bulk water has the supposedly ubiquitous Johari-Goldstein (JG) β-relaxation is a question that has not been answered. By studying the structural α-relaxation over a wide range of temperatures in several aqueous mixtures without crystallization and with glass transition temperatures Tg close to 136 K, we deduce the properties of the α-relaxation and the temperature dependence of τα,bulk(T) of bulk water. The frequency dispersion of the α-relaxation is narrow, indicating that it is weakly cooperative. A single Vogel-Fulcher-Tammann (VFT) temperature dependence can describe the data of τα,bulk(T) at low temperatures as well as at high temperatures from neutron scattering and GHz–THz dielectric relaxation, and hence, there is no fragile to strong transition. The Tg-scaled VFT temperature dependence of τα,bulk(T) has a small fragility index m less than 44, indicating that water is a “strong” glass-former. The existence of the JG β-relaxation in bulk water is supported by its equivalent relaxation observed in water confined in spaces with lengths of nanometer scale and having Arrhenius T-dependence of its relaxation times τconf(T). The equivalence is justified by the drastic reduction of cooperativity of the α-relaxation in nanoconfinement and rendering it to become the JG β-relaxation. Thus, the τconf(T) from experiments can be taken as τβ,bulk(T), the JG β-relaxation time of bulk water. The ratio τα,bulk(Tg)/τβ,bulk(Tg) is smaller than most glass-formers, and it corresponds to the Kohlrausch α-correlation function, exp[−(t/τα,bulk)1−n], having (1−n) = 0.90. The dielectric data of many aqueous mixtures and hydrated biomolecules with Tg higher than that of water show the presence of a secondary ν-relaxation from the water component. The ν-relaxation is strongly connected to the α-relaxation in properties, and hence, it belongs to the special class of secondary relaxations in glass-forming systems. Typically, its relaxation time τν(T) is longer than τβ,bulk(T), but τν(T) becomes about the same as τβ,bulk(T) at sufficiently high water content. However, τν(T) does not become shorter than τβ,bulk(T). Thus, τβ,bulk(T) is the lower bound of τν(T) for all aqueous mixtures and hydrated biomolecules. Moreover, it is τβ,bulk(T) but not τα(T) that is responsible for the dynamic transition of hydrated globular proteins.

1.
S.
Capaccioli
and
K. L.
Ngai
,
J. Chem. Phys.
135
,
104504
(
2011
).
2.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Nature
330
,
552
(
1987
).
3.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Chem. Phys.
95
,
2955
(
1991
).
4.
K.
Winkel
,
D. T.
Bowron
,
T.
Loerting
,
E.
Mayer
, and
J. L.
Finney
,
J. Chem. Phys.
130
,
204502
(
2009
).
5.
K.
Winkel
,
M. S.
Elsaesser
,
E.
Mayer
, and
T.
Loerting
,
J. Chem. Phys.
128
,
044510-1
(
2008
).
6.
K.
Winkel
,
M. S.
Elsaesser
,
M.
Seidl
,
M.
Bauer
,
E.
Mayer
, and
T.
Loerting
,
J. Phys.: Condens. Matter
20
,
494212
(
2008
).
7.
C. A.
Angell
,
Chem. Rev.
102
,
2627
2650
(
2002
).
8.
Y. Z.
Yue
and
C. A.
Angell
,
Nature
427
,
717
(
2004
).
9.
A.
Minoguchi
,
R.
Richert
, and
C. A.
Angell
,
Phys. Rev. Lett.
93
,
215703
(
2004
).
10.
A.
Minoguchi
,
R.
Richert
, and
C. A.
Angell
,
J. Phys. Chem. B
108
,
19825
(
2005
).
11.
C. A.
Angell
,
Annu. Rev. Phys. Chem.
55
,
559
583
(
2004
).
12.
C. A.
Angell
,
Science
319
,
582
(
2008
).
13.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
,
Chem. Rev.
116
,
7463
(
2016
).
14.
K. L.
Ngai
,
S.
Capaccioli
,
S.
Ancherbak
, and
N.
Shinyashiki
,
Philos. Mag.
91
,
1809
(
2011
).
15.
D. R.
MacFarlane
and
C. A.
Angell
,
J. Phys. Chem.
88
,
759
(
1984
).
16.
M.
Nakanishi
,
P.
Griffin
,
E.
Mamontov
, and
A. P.
Sokolov
,
J. Chem. Phys.
136
,
124512
(
2012
).
17.
K. L.
Ngai
,
J. Mol. Liq.
253
,
113
(
2018
).
18.
K. L.
Ngai
,
J. Chem. Phys.
109
,
6982
(
1998
).
19.
K. L.
Ngai
and
M.
Paluch
,
J. Phys. Chem.
120
,
857
(
2004
).
20.
S.
Capaccioli
,
M.
Paluch
,
D.
Prevosto
,
K. L.
Li-Min Wang
, and
J.
Ngai
,
J. Phys. Chem. Lett.
3
,
735
(
2012
).
21.
K. L.
Ngai
,
Relaxation and Diffusion in Complex Systems
(
Springer
,
New York
,
2011
).
22.
N.
Shinyashiki
,
S.
Sudo
,
S.
Yagihara
,
A.
Spanoudaki
,
A.
Kyritsis
, and
P.
Pissis
,
J. Phys.: Condens. Matter
19
,
205113
(
2007
).
23.
S.
Capaccioli
,
K. L.
Ngai
,
S.
Ancherbak
,
P. A.
Rolla
, and
N.
Shinyashiki
,
J. Non-Cryst. Solids
357
,
641
654
(
2011
).
24.
S.
Capaccioli
,
K. L.
Ngai
, and
N.
Shinyashiki
,
J. Phys. Chem. B
111
,
8197
(
2007
).
25.
K. L.
Ngai
,
S.
Capaccioli
, and
N.
Shinyashiki
,
J. Phys. Chem. B
112
,
3826
(
2008
).
26.
J.
Swenson
,
H.
Jansson
, and
R.
Bergman
,
Phys. Rev. Lett.
96
,
247802
247804
(
2006
).
27.
R.
Bergman
and
J.
Swenson
,
Nature
403
,
283
(
2000
).
28.
H.
Jansson
,
R.
Bergman
, and
J.
Swenson
,
J. Non-Cryst. Solids
351
,
2858
(
2005
).
29.
S.
Cerveny
,
G. A.
Schwartz
,
R.
Bergman
, and
J.
Swenson
,
Phys. Rev. Lett.
93
,
245702
(
2004
).
30.
S.
Cerveny
,
F.
Barroso-Bujans
,
A.
Alegria
, and
J.
Colmenero
,
J. Phys. Chem. C
114
,
2604
(
2010
).
31.
J.
Swenson
and
S.
Cerveny
,
J. Phys.: Condens. Matter
27
,
033102
(
2015
).
32.
S.
Cerveny
,
F.
Mallamace
,
J.
Swenson
,
M.
Vogel
, and
L.
Xu
,
Chem. Rev.
116
,
7608
7625
(
2016
).
33.
A.
Panagopoulou
,
A.
Kyritsis
,
N.
Shinyashiki
, and
P.
Pissis
,
J. Phys. Chem. B
116
,
4593
(
2012
).
34.
A.
Panagopoulou
,
A.
Kyritsis
,
M.
Vodina
, and
P.
Pissis
,
Biochim. Biophys. Acta
1834
,
977
(
2013
).
35.
P.
Lunkenheimer
,
S.
Emmert
,
R.
Gulich
,
M.
Köhler
,
M.
Wolf
,
M.
Schwab
, and
A.
Loidl
,
Phys. Rev. E
96
,
062607
(
2017
).
36.
A.
Arbe
,
P.
Malo de Molina
,
F.
Alvarez
,
B.
Frick
, and
J.
Colmenero
,
Phys. Rev. Lett.
117
,
185501
(
2016
).
37.
F.
Parak
,
E. W.
Knapp
, and
D.
Kucheida
,
J. Mol. Biol.
161
,
177
(
1982
).
38.
W.
Doster
,
Biochim. Biophys. Acta
1804
,
3
14
(
2010
).
39.
W.
Doster
,
J. Non-Cryst. Solids
357
,
622
(
2011
).
40.
E.
Cornicchi
,
M.
Marconi
,
G.
Onori
, and
A.
Paciaroni
,
Biophys. J.
91
,
289
297
(
2006
).
41.
K. L.
Ngai
,
S.
Capaccioli
, and
A.
Paciaroni
,
Chem. Phys.
424
,
37
44
(
2013
).
42.
S.
Capaccioli
,
K. L.
Ngai
,
S.
Ancherbak
, and
A.
Paciaroni
,
J. Phys. Chem. B
116
,
1745
(
2012
).
43.
K. L.
Ngai
,
S.
Capaccioli
, and
A.
Paciaroni
,
J. Chem. Phys.
138
,
235102
(
2013
).
44.
K. L.
Ngai
,
S.
Capaccioli
, and
A.
Paciaroni
,
Biochim. Biophys. Acta
1861
,
3553
3563
(
2017
).
45.
A. C.
Drake
,
Y.
Lee
,
E. M.
Burgess
,
J. O. M.
Karlsson
,
A.
Eroglu
, and
A. Z.
Higgins
,
PLoS One
13
(
1
),
e0190713
(
2018
).
46.
M.
Nakanishi
and
A. P.
Sokolov
,
J. Non-Cryst. Solids
407
,
478
485
(
2015
).
47.
S.
Ancherbak
, “
Dynamics of supercooled aqueous systems at low temperature and high pressure
,” Ph.D. dissertation (
University of Pisa
,
2011
), https://etd.adm.unipi.it/t/etd-07022011-103037/.
48.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Chem. Phys.
97
,
5851
(
1992
).
49.
G. P.
Johari
,
J. Chem. Phys.
109
,
1070
(
1998
).
50.
H.
Jansson
and
J.
Swenson
,
Eur. Phys. J. E
12
,
51
(
2003
).
51.
J.
Swenson
,
H.
Jansson
,
W. S.
Howells
, and
S.
Longeville
,
J. Chem. Phys.
122
,
084505
(
2005
).
52.
J.
Hedström
,
J.
Swenson
,
R.
Bergman
,
H.
Jansson
, and
S.
Kittaka
,
Eur. Phys. J.: Spec. Top.
141
,
53
56
(
2007
).
53.
J.
Banys
,
M.
Kinka
,
A.
Meskauskas
,
J.
Macutkevic
,
G.
Völkel
,
W.
Böhlman
,
V.
Umamamaheswari
,
M.
Hartmann
, and
A.
Pöppl
,
Ferroelectrics
,
318
,
201
207
(
2005
).
54.
S.
Cerveny
,
S.
Arrese-Igor
,
J. S.
Dolado
,
J. J.
Gaitero
,
A.
Alegria
, and
J.
Colmenero
,
J. Chem. Phys.
134
,
034509
(
2011
).
55.
M.
Cammarata
,
M.
Levantino
,
A.
Cupane
,
A.
Longo
,
A.
Martorana
, and
F.
Bruni
,
Eur. Phys. J. E
12
,
63
(
2003
).
56.
M.
Oguni
,
Y.
Kanke
, and
S.
Namba
,
AIP Conf. Proc.
982
,
34
(
2008
).
57.
M.
Oguni
,
S.
Maruyama
,
K.
Wakabayashi
, and
A.
Nagoe
,
Chem.–Asian J.
2
,
514
(
2007
).
58.
M.
Sun
,
L.-M.
Wang
,
Y.
Tian
,
R.
Liu
,
K. L.
Ngai
, and
C.
Tan
,
J. Phys. Chem. B
115
,
8242
(
2011
).
59.
J. B.
Hasted
, “
Liquid water: Dielectric properties
,” in
Water: A Comprehensive Treatise
, edited by
F.
Franks
(
Plenum
,
New York
,
1972
).
60.
R.
Buchner
,
J.
Barthel
, and
J.
Stauber
,
Chem. Phys. Lett.
306
,
57
(
1999
).
61.
C.
Rønne
,
P. O.
Åstrand
, and
S. R.
Keidung
,
J. Chem. Phys.
107
,
5319
(
1997
).
62.
D.
Bertolini
,
M.
Cassettari
, and
G.
Salvetti
,
J. Chem. Phys.
76
,
3285
(
1982
).
63.
N.
Shinyashiki
,
M.
Shimomura
,
T.
Ushiyama
,
T.
Miyagawa
, and
S.
Yagihara
,
J. Phys. Chem. B
111
,
10079
(
2007
).
64.
S.
Sudo
,
M.
Shimomura
,
T.
Saito
,
T.
Kashiwagi
,
N.
Shinyashiki
, and
S.
Yagihara
,
J. Non-Cryst. Solids
305
,
197
(
2002
).
65.
S.
Sudo
,
M.
Shimomura
,
K.
Kanari
,
N.
Shinyashiki
, and
S.
Yagihara
,
J. Chem. Phys.
124
,
044901
(
2006
).
66.
S.
Sudo
,
S.
Tsubotani
,
M.
Shimomura
,
N.
Shinyashiki
, and
S.
Yagihara
,
J. Chem. Phys.
121
,
7332
(
2004
).
67.
N.
Shinyashiki
,
M.
Shinohara
,
Y.
Iwata
,
T.
Goto
,
M.
Oyama
,
S.
Suzuki
,
W.
Yamamoto
,
S.
Yagihara
,
T.
Inoue
,
S.
Oyaizu
,
S.
Yamamoto
,
K. L.
Ngai
, and
S.
Capaccioli
,
J. Phys. Chem. B
112
,
15470
(
2008
).
68.
K.
Grzybowska
,
M.
Paluch
,
A.
Grzybowski
,
S.
Pawlus
,
S.
Ancherbak
,
D.
Prevosto
, and
S.
Capaccioli
,
J. Phys. Chem. Lett.
1
,
1170
(
2010
).
69.
S.
Cerveny
,
J.
Colmenero
, and
A.
Alegría
,
Macromolecules
38
,
7056
(
2005
).
70.
S. K.
Jain
and
G. P.
Johari
,
J. Phys. Chem.
92
,
5851
(
1988
).
71.
S.
Cerveny
,
A.
Alegría
, and
J.
Colmenero
,
J. Chem. Phys.
128
,
044901
(
2008
).
72.
J.
Sjöström
,
J.
Mattsson
,
R.
Bergman
,
E.
Johansson
,
K.
Josefsson
,
D.
Svantesson
, and
J.
Swenson
,
Phys. Chem. Chem. Phys.
12
,
10452
(
2010
).
73.
K.
Pathmanathan
and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
28
,
675
(
1990
).
74.
K.
Pathmanathan
and
G. P.
Johari
,
J. Chem. Soc. Faraday Trans.
90
,
1143
(
1994
).
75.
S.
Cerveny
,
I.
Combarro-Palacios
, and
J.
Swenson
,
J. Phys. Chem. Lett.
7
,
4093
4098
(
2016
).
76.
N.
Shinyashiki
,
W.
Yamamoto
,
A.
Yokoyama
,
T.
Yoshinari
,
S.
Yagihara
,
R.
Kita
,
K. L.
Ngai
, and
S.
Capaccioli
,
J. Phys. Chem. B
113
,
14448
(
2009
).
77.
S.
Khodadadi
,
S.
Pawlus
,
J. H.
Roh
,
V.
Garcia Sakai
,
E.
Mamontov
, and
A. P.
Sokolov
,
J. Chem. Phys.
128
,
195106
(
2008
).
78.
H.
Jansson
and
J.
Swenson
,
Biochim. Biophys. Acta
1804
,
20
(
2010
).
79.
S. A.
Lusceac
,
M. R.
Vogel
, and
C. R.
Herbers
,
Biochim. Biophys. Acta
1804
,
41
48
(
2010
).
80.
F. G.
Parak
and
G. U.
Nienhaus
,
J. Non-Cryst. Solids
131-133
,
362
368
(
1991
).
81.
W.
Doster
,
Eur. Biophys. J.
37
,
591
602
(
2008
).
82.
A.
Panagopoulou
,
A.
Kyritsis
,
R.
Sabater i Serra
,
J. L.
Gomez
,
Ribellez
,
N.
Shinyashiki
, and
P.
Pissis
,
Biochim. Biophys. Acta
1814
,
1984
1996
(
2011
).
83.
S.
Khodadadi
and
A. P.
Sokolov
,
Soft Matter
11
,
4984
(
2015
).
84.
H.
Jansson
,
R.
Bergman
, and
J.
Swenson
,
J. Phys. Chem. B
109
,
24134
(
2005
).
85.
C.
Gainaru
,
A.
Fillmer
, and
R.
Böhmer
,
J. Phys. Chem. B
113
,
12628
(
2009
).
86.
I.
Combarro Palacios
,
C.
Olsson
,
C. S.
Kamma-Lorger
,
J.
Swenson
, and
S.
Cerveny
,
J. Chem. Phys.
150
,
124902
(
2019
).
87.
W.
Doster
,
H.
Nakagawa
, and
M. S.
Appavou
,
J. Chem. Phys.
139
,
045105
(
2013
).
88.
W.
Doster
and
M.
Settles
,
Biochim. Biophys. Act.
1749
,
173
186
(
2005
).
89.
H.
Lichtengegger
,
W.
Doster
,
T.
Kleinert
,
A.
Birk
,
B.
Sepiol
, and
G.
Vogl
,
Biophys. J.
76
,
414
422
(
1999
).
90.
S.
Khodadadi
,
S.
Pawlus
, and
A. P.
Sokolov
,
J. Phys. Chem. B
112
,
14273
14280
(
2008
).
91.
S.
Khodadadi
,
A.
Malkovskiy
,
A.
Kisliuk
, and
A. P.
Sokolov
,
Biochim. Biophys. Acta
1804
,
15
19
(
2010
).
92.
M.
Wubbenhorst
and
J.
van Turnhout
,
J. Non-Cryst. Solids
305
,
40
49
(
2002
).
93.
K.
Wood
,
C.
Caronna
,
P.
Fouquet
,
W.
Haussler
,
F.
Natali
,
J.
Ollivier
,
A.
Orecchini
,
M.
Plazanet
, and
G.
Zaccai
,
Chem. Phys.
345
,
305
(
2008
).
94.
R. F.
Tilton
,
J. C.
Dewan
, and
G. A.
Petsko
,
Biochemistry
31
(
9
),
2469
2481
(
1992
).
95.
R.
Bohmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
96.
D.
Ringe
and
G. A.
Petsko
,
Biophys. Chem.
105
,
667
680
(
2003
).

Supplementary Material

You do not currently have access to this content.