We have applied a two-structure approach to the description of the thermodynamic properties of supercooled and stretched water, metastable toward vapor, ice, or both, by incorporating the stability limit of liquid with respect to vapor at negative pressures. In addition to the properties of water considered in previous studies, we include new data recently obtained in deeply supercooled and stretched regions. Our model reproduces the experimentally observed anomalies in metastable water up to 400 MPa and down to −140 MPa, and can provide a physically based extrapolation in regions where no measurements are available yet. Moreover, we are able to elucidate the thermodynamic nature of the alternative “states” of liquid water, namely, high-temperature denser water (state A) and “mother-of-ice” lighter water (state B). Based on the internal consistency of the described anomalies and new data on the isothermal compressibility, we exclude the critical-point-free scenario in which the first-order liquid-liquid transition line would continue into the stretched liquid state (doubly metastable) crossing the vapor-liquid spinodal. A “singularity-free” scenario remains an option for explaining supercooled water’s anomalies within the framework of two-state thermodynamics; however, the extreme case of the singularity-free scenario, ideal mixing of A and B, seems improbable. We have also clarified the concept of fast interconversion of alternative states in supercooled water as a phenomenological representation of distribution of short-ranged local structures.

1.
R. J.
Speedy
and
C. A.
Angell
,
J. Chem. Phys.
65
,
851
(
1976
).
2.
C. A.
Angell
,
W. J.
Sichina
, and
M.
Oguni
,
J. Phys. Chem.
86
,
998
(
1982
).
3.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
,
Chem. Rev.
116
,
7463
(
2016
).
4.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature
360
,
324
(
1992
).
5.
O.
Mishima
and
H. E.
Stanley
,
Nature
392
,
164
(
1998
).
6.
P. G.
Debenedetti
,
Nature
392
,
127
(
1998
).
7.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
8.
F.
Caupin
,
J. Non-Cryst. Solids
407
,
441
(
2015
).
9.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Nature
510
,
385
(
2014
).
10.
J. C.
Palmer
,
A.
Haji-Akbari
,
R. S.
Singh
,
F.
Martelli
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Chem. Phys.
148
,
137101
(
2018
).
11.
H.
Whiting
,
Proc. Am. Acad. Arts Sci.
19
,
353
(
1883
).
12.
W. C.
Röntgen
,
Ann. Phys.
281
,
91
(
1892
).
13.
C. T.
Moynihan
,
MRS Proc.
455
,
411
(
1996
).
14.
E. G.
Ponyatovsky
,
V. V.
Sinitsyn
, and
T. A.
Pozdnyakova
,
J. Chem. Phys.
109
,
2413
(
1998
).
15.
A.
Ciach
,
W.
Góźdź
, and
A.
Perera
,
Phys. Rev. E
78
,
021203
(
2008
).
16.
M. J.
Cuthbertson
and
P. H.
Poole
,
Phys. Rev. Lett.
106
,
115706
(
2011
).
17.
C. E.
Bertrand
and
M. A.
Anisimov
,
J. Phys. Chem. B
115
,
14099
(
2011
).
18.
V.
Holten
and
M. A.
Anisimov
,
Sci. Rep.
2
,
713
(
2012
).
19.
K.
Sanderson
,
New Sci.
238
,
26
(
2018
).
20.
H.
Tanaka
,
J. Chem. Phys.
112
,
799
(
2000
).
21.
H.
Tanaka
,
Eur. Phys. J. E
35
,
113
(
2012
).
22.
H.
Tanaka
,
Faraday Discuss.
167
,
9
(
2014
).
23.
J.
Russo
and
H.
Tanaka
,
Nat. Commun.
5
,
3556
(
2014
).
24.
J.
Russo
,
K.
Akahane
, and
H.
Tanaka
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E3333
(
2018
).
25.
R.
Shi
and
H.
Tanaka
,
J. Chem. Phys.
148
,
124503
(
2018
).
26.
R.
Shi
,
J.
Russo
, and
H.
Tanaka
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
9444
(
2018
).
27.
R.
Shi
,
J.
Russo
, and
H.
Tanaka
,
J. Chem. Phys.
149
,
224502
(
2018
).
28.
R. S.
Singh
,
J. W.
Biddle
,
P. G.
Debenedetti
, and
M. A.
Anisimov
,
J. Chem. Phys.
144
,
144504
(
2016
).
29.
A.
Ha
,
I.
Cohen
,
X.
Zhao
,
M.
Lee
, and
D.
Kivelson
,
J. Phys. Chem.
100
,
1
(
1996
).
30.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
,
Science
275
,
322
(
1997
).
31.
G.
Franzese
,
G.
Malescio
,
A.
Skibinsky
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Nature
409
,
692
(
2001
).
32.
H. E.
Stanley
,
Liquid Polymorphism
, Advances in Chemical Physics (
John Wiley & Sons
,
2013
).
33.
M. A.
Anisimov
,
M.
Duška
,
F.
Caupin
,
L. E.
Amrhein
,
A.
Rosenbaum
, and
R. J.
Sadus
,
Phys. Rev. X
8
,
011004
(
2018
).
34.
V.
Holten
,
J. C.
Palmer
,
P. H.
Poole
,
P. G.
Debenedetti
, and
M. A.
Anisimov
,
J. Chem. Phys.
140
,
104502
(
2014
).
35.
J. W.
Biddle
,
R. S.
Singh
,
E. M.
Sparano
,
F.
Ricci
,
M. A.
González
,
C.
Valeriani
,
J. L. F.
Abascal
,
P. G.
Debenedetti
,
M. A.
Anisimov
, and
F.
Caupin
,
J. Chem. Phys.
146
,
034502
(
2017
).
36.
V.
Holten
,
D. T.
Limmer
,
V.
Molinero
, and
M. A.
Anisimov
,
J. Chem. Phys.
138
,
174501
(
2013
).
37.
L. P.
Singh
,
B.
Issenmann
, and
F.
Caupin
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
4312
(
2017
).
38.
V.
Holten
,
J. V.
Sengers
, and
M. A.
Anisimov
,
J. Phys. Chem. Ref. Data
43
,
043101
(
2014
).
39.
The International Association for the Properties of Water and Steam
, “
Guideline on thermodynamic properties of supercooled water
,” Technical Report No. IAPWS G12-15, The International Association for the Properties of Water and Steam,
2015
, http://iapws.org/relguide/Supercooled.pdf, accessed date: April 10, 2019.
40.
Q.
Zheng
,
D. J.
Durben
,
G. H.
Wolf
, and
C. A.
Angell
,
Science
254
,
829
(
1991
).
41.
F.
Caupin
,
Phys. Rev. E
71
,
051605
(
2005
).
42.
E.
Herbert
and
F.
Caupin
,
J. Phys.: Condens. Matter
17
,
S3597
(
2005
).
43.
F.
Caupin
and
E.
Herbert
,
C. R. Phys.
7
,
1000
(
2006
).
44.
K.
Davitt
,
E.
Rolley
,
F.
Caupin
,
A.
Arvengas
, and
S.
Balibar
,
J. Chem. Phys.
133
,
174507
(
2010
).
45.
M.
El Mekki Azouzi
,
C.
Ramboz
,
J.-F.
Lenain
, and
F.
Caupin
,
Nat. Phys.
9
,
38
(
2013
).
46.
G.
Pallares
,
M. E. M.
Azouzi
,
M. A.
González
,
J. L.
Aragones
,
J. L. F.
Abascal
,
C.
Valeriani
, and
F.
Caupin
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
7936
(
2014
).
47.
G.
Pallares
,
M. A.
Gonzalez
,
J. L. F.
Abascal
,
C.
Valeriani
, and
F.
Caupin
,
Phys. Chem. Chem. Phys.
18
,
5896
(
2016
).
48.
M. A.
González
,
C.
Valeriani
,
F.
Caupin
, and
J. L. F.
Abascal
,
J. Chem. Phys.
145
,
054505
(
2016
).
49.
V.
Holten
,
C.
Qiu
,
E.
Guillerm
,
M.
Wilke
,
J.
Rička
,
M.
Frenz
, and
F.
Caupin
,
J. Phys. Chem. Lett.
8
,
5519
(
2017
).
50.
Y. E.
Altabet
,
R. S.
Singh
,
F. H.
Stillinger
, and
P. G.
Debenedetti
,
Langmuir
33
,
11771
(
2017
).
51.
F.
Caupin
and
S.
Balibar
, in
Liquids under Negative Pressure
, NATO Science Series II: Mathematics, Physics and Chemistry Vol. 84, edited by
A. R.
Imre
,
H. J.
Maris
, and
P. R.
Williams
(
Springer
,
New York
,
2002
), pp.
201
214
.
52.
H.
Maris
and
D.
Edwards
,
J. Low Temp. Phys.
129
,
1
(
2002
).
53.
F.
Caupin
,
D.
Edwards
, and
H.
Maris
,
Physica B
329
,
185
(
2003
).
54.
R. J.
Speedy
,
J. Phys. Chem.
86
,
982
(
1982
).
55.
R. J.
Speedy
,
J. Phys. Chem.
86
,
3002
(
1982
).
56.
P. G.
Debenedetti
and
M. C.
D’Antonio
,
J. Chem. Phys.
84
,
3339
(
1986
).
57.
P. G.
Debenedetti
and
M. C.
D’Antonio
,
J. Chem. Phys.
85
,
4005
(
1986
).
58.
M. C.
D’Antonio
and
P. G.
Debenedetti
,
J. Chem. Phys.
86
,
2229
(
1987
).
59.
P.
Poole
,
F.
Sciortino
,
T.
Grande
,
H.
Stanley
, and
C.
Angell
,
Phys. Rev. Lett.
73
,
1632
(
1994
).
60.
T. M.
Truskett
,
P. G.
Debenedetti
,
S.
Sastry
, and
S.
Torquato
,
J. Chem. Phys.
111
,
2647
(
1999
).
61.
S.
Sastry
,
P. G.
Debenedetti
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
53
,
6144
(
1996
).
62.
B.
Uralcan
,
F.
Latinwo
,
P. G.
Debenedetti
, and
M. A.
Anisimov
,
J. Chem. Phys.
150
,
064503
(
2019
).
63.
M.
Duska
,
J.
Hrubý
,
F.
Caupin
, and
M. A.
Anisimov
, e-print arXiv:1708.04054v1 [physics.chem-ph] (
2017
).
64.
V. P.
Voronov
,
V. E.
Podnek
, and
M. A.
Anisimov
, e-print arXiv:1812.01085 [cond-mat, physics:physics] (
2018
).
65.
K. H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
,
K. H.
Nam
,
T.
Katayama
, and
A.
Nilsson
,
Science
358
,
1589
(
2017
).
66.
K.
Stokely
,
M. G.
Mazza
,
H. E.
Stanley
, and
G.
Franzese
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
1301
(
2010
).
67.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
68.
P. G.
Debenedetti
,
Metastable Liquids
(
Princeton University Press
,
1996
).
69.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
(
2011
).
70.
G.
Menzl
,
M. A.
Gonzalez
,
P.
Geiger
,
F.
Caupin
,
J. L. F.
Abascal
,
C.
Valeriani
, and
C.
Dellago
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
13582
(
2016
).
71.

This expression was used in Ref. 35, although it was not given.

72.
D. A.
Fuentevilla
and
M. A.
Anisimov
,
Phys. Rev. Lett.
97
,
195702
(
2006
).
73.
V.
Holten
,
C. E.
Bertrand
,
M. A.
Anisimov
, and
J. V.
Sengers
,
J. Chem. Phys.
136
,
094507
(
2012
).
74.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
87
,
4840
(
1987
).
75.
T.
Sotani
,
J.
Arabas
,
H.
Kubota
,
M.
Kijima
, and
S.
Asada
,
High Temp. - High Pressures
32
,
433
(
2000
).
76.
S.
Asada
,
T.
Sotani
,
J.
Arabas
,
H.
Kubota
,
S.
Matsuo
, and
Y.
Tanaka
,
J. Phys. Condens. Matter
14
,
11447
(
2002
).
77.
O.
Mishima
,
J. Chem. Phys.
133
,
144503
(
2010
).
78.
H.
Kanno
and
C. A.
Angell
,
J. Chem. Phys.
70
,
4008
(
1979
).
79.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
80.
The International Association for the Properties of Water and Steam
, “
Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,” Technical Report No. IAPWS R6-95(2018), The International Association for the Properties of Water and Steam,
2018
, http://www.iapws.org/relguide/IAPWS95-2018.pdf, accessed date: April 10, 2019.
81.
J.
Troncoso
,
J. Chem. Phys.
147
,
084501
(
2017
).
82.
V. A.
Belogol’skii
,
S. S.
Sekoyan
,
L. M.
Samorukova
,
S. R.
Stefanov
, and
V. I.
Levtsov
,
Meas. Tech.
42
,
406
(
1999
).
83.
A.
Taschin
,
R.
Cucini
,
P.
Bartolini
, and
R.
Torre
,
Philos. Mag.
91
,
1796
(
2011
).
84.
C.-W.
Lin
and
J. P. M.
Trusler
,
J. Chem. Phys.
136
,
094511
(
2012
).
85.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
86.
V.
Holten
,
M. A.
Anisimov
, and
J. V.
Sengers
, “
Towards a supercooled water guideline
,” Technical Report, International Association for the Properties of Water and Steam,
2012
.
87.
L.
Ter Minassian
,
P.
Pruzan
, and
A.
Soulard
,
J. Chem. Phys.
75
,
3064
(
1981
).
88.
E.
Tombari
,
C.
Ferrari
, and
G.
Salvetti
,
Chem. Phys. Lett.
300
,
749
(
1999
).
89.
D. G.
Archer
and
R. W.
Carter
,
J. Phys. Chem. B
104
,
8563
(
2000
).
90.
C.
Goy
,
M. A. C.
Potenza
,
S.
Dedera
,
M.
Tomut
,
E.
Guillerm
,
A.
Kalinin
,
K.-O.
Voss
,
A.
Schottelius
,
N.
Petridis
,
A.
Prosvetov
,
G.
Tejeda
,
J. M.
Fernández
,
C.
Trautmann
,
F.
Caupin
,
U.
Glasmacher
, and
R. E.
Grisenti
,
Phys. Rev. Lett.
120
,
015501
(
2018
).
91.
F.
Caupin
,
V.
Holten
,
C.
Qiu
,
E.
Guillerm
,
M.
Wilke
,
M.
Frenz
,
J.
Teixeira
, and
A. K.
Soper
,
Science
360
,
eaat1634
(
2018
).
92.
K. H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
,
K. H.
Nam
,
T.
Katayama
, and
A.
Nilsson
,
Science
360
,
eaat1729
(
2018
).
93.
R.
Feistel
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
35
,
1021
(
2006
).
94.
E.
Trinh
and
R. E.
Apfel
,
J. Chem. Phys.
72
,
6731
(
1980
).
95.
J.-C.
Bacri
and
R.
Rajaonarison
,
J. Phys. Lett.
40
,
403
(
1979
).
96.
S.
Magazu
,
G.
Maisano
,
D.
Majolino
,
F.
Mallamace
,
P.
Migliardo
,
F.
Aliotta
, and
C.
Vasi
,
J. Phys. Chem.
93
,
942
(
1989
).
97.
P. H.
Poole
,
I.
Saika-Voivod
, and
F.
Sciortino
,
J. Phys. Condens. Matter
17
,
L431
(
2005
).
98.
B.
Uralcan
, private communication (
2019
).
99.
H.
Kanno
,
R. J.
Speedy
, and
C. A.
Angell
,
Science
189
,
880
(
1975
).
100.
H.
Kanno
and
K.
Miyata
,
Chem. Phys. Lett.
422
,
507
(
2006
).
101.
C.
Qiu
,
Y.
Krüger
,
M.
Wilke
,
D.
Marti
,
J.
Rička
, and
M.
Frenz
,
Phys. Chem. Chem. Phys.
18
,
28227
(
2016
).
102.
P. R.
ten Wolde
and
D.
Frenkel
,
Science
277
,
1975
(
1997
).
103.
P. R.
ten Wolde
and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
1
,
2191
(
1999
).
104.
G.
Bullock
and
V.
Molinero
,
Faraday Discuss.
167
,
371
(
2013
).
105.
N. J.
Hestand
and
J. L.
Skinner
,
J. Chem. Phys.
149
,
140901
(
2018
).
106.
C. A.
Angell
and
V.
Kapko
,
J. Stat. Mech.: Theory Exp.
2016
,
094004
.
107.
A. K.
Soper
and
M. A.
Ricci
,
Phys. Rev. Lett.
84
,
2881
(
2000
).
108.
F.
Perakis
and
P.
Hamm
,
J. Phys. Chem. B
115
,
5289
(
2011
).
109.
A.
Berger
,
G.
Ciardi
,
D.
Sidler
,
P.
Hamm
, and
A.
Shalit
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
2458
(
2019
).
110.
S.
Naserifar
and
W. A.
Goddard
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
1998
(
2019
).
111.
P. C.
Hohenberg
and
B. I.
Halperin
,
Rev. Mod. Phys.
49
,
435
(
1977
).
112.
F.
Latinwo
,
F. H.
Stillinger
, and
P. G.
Debenedetti
,
J. Chem. Phys.
145
,
154503
(
2016
).
113.
C. F.
Tejero
and
M.
Baus
,
Phys. Rev. E
57
,
4821
(
1998
).
114.
G.
Malescio
,
G.
Franzese
,
A.
Skibinsky
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. E
71
,
061504
(
2005
).
115.
P.
Vilaseca
and
G.
Franzese
,
J. Non-Cryst. Solids
357
,
419
(
2011
).
116.
S.
Moghaddam
,
Y. C.
Kim
, and
M. E.
Fisher
,
J. Phys. Chem. B
109
,
6824
(
2005
).
117.
A.
Taschin
,
P.
Bartolini
,
R.
Eramo
,
R.
Righini
, and
R.
Torre
,
Nat. Commun.
4
,
2401
(
2013
).
118.
F.
Perakis
,
K.
Amann-Winkel
,
F.
Lehmkühler
,
M.
Sprung
,
D.
Mariedahl
,
J. A.
Sellberg
,
H.
Pathak
,
A.
Späh
,
F.
Cavalca
,
D.
Schlesinger
,
A.
Ricci
,
A.
Jain
,
B.
Massani
,
F.
Aubree
,
C. J.
Benmore
,
T.
Loerting
,
G.
Grübel
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8193
(
2017
).
119.
J.
Niskanen
,
M.
Fondell
,
C. J.
Sahle
,
S.
Eckert
,
R. M.
Jay
,
K.
Gilmore
,
A.
Pietzsch
,
M.
Dantz
,
X.
Lu
,
D. E.
McNally
,
T.
Schmitt
,
V.
Vaz da Cruz
,
V.
Kimberg
,
F.
Gel’mukhanov
, and
A.
Föhlisch
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
4058
(
2019
).
120.
E.
Duboué-Dijon
and
D.
Laage
,
J. Phys. Chem. B
119
,
8406
(
2015
).
121.
G. P.
Johari
and
J.
Teixeira
,
J. Phys. Chem. B
119
,
14210
(
2015
).
122.
J. J.
Shephard
and
C. G.
Salzmann
,
J. Phys. Chem. Lett.
7
,
2281
(
2016
).
123.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
2009
(
2019
).
124.
F.
Martelli
,
J. Chem. Phys.
150
,
094506
(
2019
).
125.
J. C.
Palmer
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
1829
(
2019
).
126.
A. J.
Amaya
and
B. E.
Wyslouzil
,
J. Chem. Phys.
148
,
084501
(
2018
).
127.
S. M. A.
Malek
,
P. H.
Poole
, and
I.
Saika-Voivod
,
Nat. Commun.
9
,
2402
(
2018
).

Supplementary Material

You do not currently have access to this content.