Electronically excited molecules frequently exhibit two distinctive decay mechanisms that rapidly generate optical emission: one is direct fluorescence and the other is energy transfer to a neighboring component. In the latter, the process leading to the ensuing “indirect” fluorescence is known as FRET, or fluorescence resonance energy transfer. For chiral molecules, both fluorescence and FRET exhibit discriminatory behavior with respect to optical and material handedness. While chiral effects such as circular dichroism are well known, as too is chiral discrimination for FRET in isolation, this article presents a study on a stepwise mechanism that involves both. Chirally sensitive processes follow excitation through the absorption of circularly polarized light and are manifest in either direct or indirect fluorescence. Following recent studies setting down the symmetry principles, this analysis provides a rigorous, quantum outlook that complements and expands on these works. Circumventing expressions that contain complicated tensorial components, our results are amenable for determining representative numerical values for the relative importance of the various coupling processes. We discover that circular dichroism exerts a major influence on both fluorescence and FRET, and resolving the engagement of chirality in each component reveals the distinct roles of absorption and emission by, and between, donor and acceptor pairs. It emerges that chiral discrimination in the FRET stage is not, as might have been expected, the main arbiter in the stepwise mechanism. In the concluding discussion on various concepts, attention is focused on the validity of helicity transfer in FRET.

1.
Z.
Li
,
M.
Mutlu
, and
E.
Ozbay
,
J. Opt.
15
,
023001
(
2013
).
2.
Z.
Wang
,
F.
Cheng
,
T.
Winsor
, and
Y.
Liu
,
Nanotechnology
27
,
412001
(
2016
).
3.
P.
Lodahl
,
S.
Mahmoodian
,
S.
Stobbe
,
A.
Rauschenbeutel
,
P.
Schneeweiss
,
J.
Volz
,
H.
Pichler
, and
P.
Zoller
,
Nature
541
,
473
(
2017
).
4.
J. T.
Collins
,
C.
Kuppe
,
D. C.
Hooper
,
C.
Sibilia
,
M.
Centini
, and
V. K.
Valev
,
Adv. Opt. Mater.
5
,
1700182
(
2017
).
5.
S. F.
Mason
,
Molecular Optical Activity and the Chiral Discriminations
(
Cambridge University Press
,
Cambridge
,
1982
).
6.
D. S.
Bradshaw
,
J. M.
Leeder
,
M. M.
Coles
, and
D. L.
Andrews
,
Chem. Phys. Lett.
626
,
106
(
2015
).
7.
A.
Canaguier-Durand
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
,
New J. Phys.
15
,
123037
(
2013
).
8.
G.
Tkachenko
and
E.
Brasselet
,
Nat. Commun.
5
,
3577
(
2014
).
9.
R. P.
Cameron
,
S. M.
Barnett
, and
A. M.
Yao
,
New J. Phys.
16
,
013020
(
2014
).
10.
D. S.
Bradshaw
and
D. L.
Andrews
,
New J. Phys.
16
,
103021
(
2014
).
11.
Y.
Zhao
,
A. A. E.
Saleh
, and
J. A.
Dionne
,
ACS Photonics
3
,
304
(
2016
).
12.
A.
Afanasev
,
C. E.
Carlson
, and
M.
Solyanik
,
J. Opt.
19
,
105401
(
2017
).
13.
K. A.
Forbes
and
D. L.
Andrews
,
Phys. Rev. A
99
,
023837
(
2019
).
14.
K. A.
Forbes
,
Phys. Rev. Lett.
122
,
103201
(
2019
).
15.
G.
Gottarelli
,
S.
Lena
,
S.
Masiero
,
S.
Pieraccini
, and
G. P.
Spada
,
Chirality
20
,
471
(
2008
).
16.
G.
Siligardi
,
R.
Hussain
,
S. G.
Patching
, and
M. K.
Phillips-Jones
,
Biochim. Biophys. Acta
1838
,
34
(
2014
).
17.
A. J.
Miles
and
B. A.
Wallace
,
Chem. Soc. Rev.
45
,
4859
(
2016
).
18.
J. P.
Riehl
and
F. S.
Richardson
,
Chem. Rev.
86
,
1
(
1986
).
19.
J. P.
Riehl
and
F. S.
Richardson
,
Methods Enzymol.
226
,
539
(
1993
).
20.
D. L.
Andrews
and
A. A.
Demidov
,
Resonance Energy Transfer
(
Wiley
,
Chichester
,
1999
).
21.
D. M.
Jameson
,
Introduction to Fluorescence
(
CRC Press
,
Boca Raton
,
2014
).
22.
D. W.
Piston
and
G.-J.
Kremers
,
Trends Biochem. Sci.
32
,
407
(
2007
).
23.
R.
Vafabakhsh
and
T.
Ha
,
Science
337
,
1097
(
2012
).
25.
A. J.
Lam
,
F.
St-Pierre
,
Y.
Gong
,
J. D.
Marshall
,
P. J.
Cranfill
,
M. A.
Baird
,
M. R.
McKeown
,
J.
Wiedenmann
,
M. W.
Davidson
,
M. J.
Schnitzer
,
R. Y.
Tsien
, and
M. Z.
Lin
,
Nat. Methods
9
,
1005
(
2012
).
26.
P.
Nelson
,
From Photon to Neuron: Light, Imaging, Vision
(
Princeton University Press
,
Princeton
,
2017
).
27.
B. T.
Bajar
,
E. S.
Wang
,
S.
Zhang
,
M. Z.
Lin
, and
J.
Chu
,
Sensors
16
,
1488
(
2016
).
28.
E.
Maligaspe
,
T.
Kumpulainen
,
H.
Lemmetyinen
,
N. V.
Tkachenko
,
N. K.
Subbaiyan
,
M. E.
Zandler
, and
F.
D’Souza
,
J. Phys. Chem. A
114
,
268
(
2010
).
29.
V. K.
Praveen
,
C.
Ranjith
,
E.
Bandini
,
A.
Ajayaghosh
, and
N.
Armaroli
,
Chem. Soc. Rev.
43
,
4222
(
2014
).
30.
D. H.
Metcalf
,
S. W.
Snyder
,
J.
Demas
, and
F.
Richardson
,
J. Am. Chem. Soc.
112
,
5681
(
1990
).
31.
D. H.
Metcalf
,
J. P.
Bolender
,
M. S.
Driver
, and
F.
Richardson
,
J. Phys. Chem.
97
,
553
(
1993
).
32.
J. E.
Field
,
G.
Muller
,
J. P.
Riehl
, and
D.
Venkataraman
,
J. Am. Chem. Soc.
125
,
11808
(
2003
).
33.
J.
Zhao
and
T. D.
James
,
Chem. Commun.
1889
(
2005
).
34.
J. P.
Riehl
and
G.
Muller
, in
Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations
(
2011
), pp.
65
.
35.
J.
Liu
,
H.
Su
,
L.
Meng
,
Y.
Zhao
,
C.
Deng
,
J. C.
Ng
,
P.
Lu
,
M.
Faisal
,
J. W.
Lam
, and
X.
Huang
,
Chem. Sci.
3
,
2737
(
2012
).
36.
E. M.
Sánchez-Carnerero
,
A. R.
Agarrabeitia
,
F.
Moreno
,
B. L.
Maroto
,
G.
Muller
,
M. J.
Ortiz
, and
S.
de la Moya
,
Chem. Eur. J.
21
,
13488
(
2015
).
37.
B.
Le Feber
,
N.
Rotenberg
, and
L.
Kuipers
,
Nat. Commun.
6
,
6695
(
2015
).
38.
S.
Lobanov
,
S.
Tikhodeev
,
N.
Gippius
,
A.
Maksimov
,
E.
Filatov
,
I.
Tartakovskii
,
V.
Kulakovskii
,
T.
Weiss
,
C.
Schneider
, and
J.
Geßler
,
Phys. Rev. B
92
,
205309
(
2015
).
39.
M.
Cotrufo
,
C. I.
Osorio
, and
A. F.
Koenderink
,
ACS Nano
10
,
3389
(
2016
).
40.
G.
Longhi
,
E.
Castiglioni
,
J.
Koshoubu
,
G.
Mazzeo
, and
S.
Abbate
,
Chirality
28
,
696
(
2016
).
41.
M.
Nakamura
,
J.
Suzuki
,
F.
Ota
,
T.
Takada
,
K.
Akagi
, and
K.
Yamana
,
Chem. - Eur. J.
22
,
9121
(
2016
).
42.
L.
Cerdan
,
F.
Moreno
,
M.
Johnson
,
G.
Muller
,
S.
de la Moya
, and
I.
Garcia-Moreno
,
Phys. Chem. Chem. Phys.
19
,
22088
(
2017
).
43.
J.
Jiménez
,
L.
Cerdán
,
F.
Moreno
,
B. L.
Maroto
,
I.
García-Moreno
,
J. L.
Lunkley
,
G.
Muller
, and
S.
de la Moya
,
J. Phys. Chem. C
121
,
5287
(
2017
).
44.
S.
Takahashi
,
Y.
Ota
,
T.
Tajiri
,
J.
Tatebayashi
,
S.
Iwamoto
, and
Y.
Arakawa
,
Phys. Rev. B
96
,
195404
(
2017
).
45.
H.-T.
Lin
,
C.-Y.
Chang
,
P.-J.
Cheng
,
M.-Y.
Li
,
C.-C.
Cheng
,
S.-W.
Chang
,
L. L. J.
Li
,
C.-W.
Chu
,
P.-K.
Wei
, and
M.-H.
Shih
,
ACS Appl. Mater. Interfaces
10
,
15996
(
2018
).
46.
H.
Zheng
,
W.
Li
,
W.
Li
,
X.
Wang
,
Z.
Tang
,
S. X. A.
Zhang
, and
Y.
Xu
,
Adv. Mater.
30
,
1705948
(
2018
).
47.
J. M.
Leeder
,
H. T.
Haniewicz
, and
D. L.
Andrews
,
J. Opt. Soc. Am. B
32
,
2308
(
2015
).
48.
J. M.
Leeder
,
H. T.
Haniewicz
, and
D. L.
Andrews
,
Proc. SPIE
9545
,
954502
(
2015
).
49.
F.
Crimin
,
N.
Mackinnon
,
J. B.
Götte
, and
S. M.
Barnett
,
Appl. Sci.
9
,
828
(
2019
).
50.
D.
Craig
and
T.
Thirunamachandran
,
J. Chem. Phys.
109
,
1259
(
1998
).
51.
D.
Craig
and
T.
Thirunamachandran
,
Theor. Chem. Acc.
102
,
112
(
1999
).
52.
A.
Salam
,
J. Chem. Phys.
122
,
044112
(
2005
).
54.
J. J.
Rodriguez
and
A.
Salam
,
Chem. Phys. Lett.
498
,
67
(
2010
).
55.
J. J.
Rodriguez
and
A.
Salam
,
J. Phys. Chem. B
115
,
5183
(
2010
).
56.
G. J.
Daniels
,
R. D.
Jenkins
,
D. S.
Bradshaw
, and
D. L.
Andrews
,
J. Chem. Phys.
119
,
2264
(
2003
).
57.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
(
Dover Publications
,
Mineola, NY
,
1998
).
58.
I.
Lindgren
,
S.
Salomonson
, and
D.
Hedendahl
,
Int. J. Quantum Chem.
108
,
2272
(
2008
).
59.
A.
Salam
,
Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions
(
Wiley
,
Hoboken, NJ
,
2009
).
60.
D. L.
Andrews
,
G. A.
Jones
,
A.
Salam
, and
R. G.
Woolley
,
J. Chem. Phys.
148
,
040901
(
2018
).
61.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
Cambridge
,
2009
).
62.
63.
D. L.
Andrews
,
Methods Appl. Fluoresc.
7
,
032001
(
2019
).
64.
D. S.
Bradshaw
and
D. L.
Andrews
,
J. Phys. Chem. A
117
,
75
(
2013
).
65.
E. A.
Power
and
T.
Thirunamachandran
,
J. Chem. Phys.
60
,
3695
(
1974
).
66.
V. K.
Valev
,
J. J.
Baumberg
,
C.
Sibilia
, and
T.
Verbiest
,
Adv. Mater.
25
,
2517
(
2013
).
67.
D. L.
Andrews
,
Molecular Photophysics and Spectroscopy
(
Morgan & Claypool Publishers
,
San Rafael, CA
,
2014
).
68.
D. L.
Andrews
and
D. S.
Bradshaw
,
Eur. J. Phys.
25
,
845
(
2004
).
69.
M. R.
Bourgeois
,
A. T.
Liu
,
M. B.
Ross
,
J. M.
Berlin
, and
G. C.
Schatz
,
J. Phys. Chem. C
121
,
15915
(
2017
).
70.
K.
Nasiri Avanaki
,
W.
Ding
, and
G. C.
Schatz
,
J. Phys. Chem. C
122
,
29445
(
2018
).
71.
G. D.
Scholes
,
R. D.
Harcourt
, and
G. R.
Fleming
,
J. Phys. Chem. B
101
,
7302
(
1997
).
72.
C. G.
dos Remedios
and
P. D. J.
Moens
, in
Resonance Energy Transfer
, edited by
D. L.
Andrews
and
A. A.
Demidov
(
Wiley
,
New York
,
1999
), pp.
1
.
73.
74.
P.
Fischer
and
F.
Hache
,
Chirality
17
,
421
(
2005
).
75.
M. J.
Huttunen
,
G.
Bautista
,
M.
Decker
,
S.
Linden
,
M.
Wegener
, and
M.
Kauranen
,
Opt. Mater. Express
1
,
46
(
2011
).
76.
E. A.
Mamonov
,
T. V.
Murzina
,
I. A.
Kolmychek
,
A. I.
Maydykovsky
,
V. K.
Valev
,
A. V.
Silhanek
,
T.
Verbiest
,
V. V.
Moshchalkov
, and
O. A.
Aktsipetrov
,
Opt. Express
20
,
8518
(
2012
).
77.
S. P.
Rodrigues
,
S.
Lan
,
L.
Kang
,
Y.
Cui
, and
W.
Cai
,
Adv. Mater.
26
,
6157
(
2014
).
78.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
,
New J. Phys.
15
,
033026
(
2013
).
79.
I.
Fernandez-Corbaton
and
C.
Rockstuhl
,
Phys. Rev. A
95
,
053829
(
2017
).
80.
D. L.
Andrews
,
Phys. Rev. A
81
,
033825
(
2010
).
81.
M.
Nieto-Vesperinas
,
Phys. Rev. A
92
,
023813
(
2015
).
82.
L.
Bene
,
M.
Bagdány
, and
L.
Damjanovich
,
Biophys. Chem.
239
,
38
(
2018
).
83.
D.
Yang
,
P.
Duan
,
L.
Zhang
, and
M.
Liu
,
Nat. Commun.
8
,
15727
(
2017
).
84.
L.
Ji
,
Y.
Sang
,
G.
Ouyang
,
D.
Yang
,
P.
Duan
,
Y.
Jiang
, and
M.
Liu
,
Angew. Chem., Int. Ed.
58
,
844
(
2019
).

Supplementary Material

You do not currently have access to this content.