The efficiencies of light-harvesting complexes in biological systems can be much higher than the current efficiencies of artificial solar cells. In this paper, we therefore propose and analyze an energy transport mechanism which employs adiabatic passages between the states of an artificially designed antenna molecular system to significantly enhance the conversion of incoming light into internal energy. It is shown that the proposed transport mechanism is relatively robust against spontaneous emission and dephasing, while also being able to take advantage of collective effects. Our aim is to provide new insight into the energy transport in molecular complexes and to improve the design of solar cells.
REFERENCES
1.
2.
S.
Jang
, D.
Newton
, and R. J.
Silbey
, Phys. Rev. Lett.
92
, 218301
(2004
).3.
L.
Cleary
, H.
Chen
, C.
Chuang
, R. J.
Silbey
, and J.
Cao
, Proc. Natl. Acad. Sci. U. S. A.
110
, 8537
(2013
).4.
D. I. G.
Bennett
, G. R.
Fleming
, and K.
Amarnath
, Proc. Natl. Acad. Sci. U. S. A.
115
, E9523
(2018
).5.
F.
Caycedo-Soler
, C. A.
Schroeder
, C.
Autenrieth
, A.
Pick
, R.
Ghosh
, S. F.
Huelga
, and M. B.
Plenio
, J. Phys. Chem. Lett.
8
, 6015
(2017
).6.
A.
Ishizaki
and G. R.
Fleming
, J. Chem. Phys.
130
, 234111
(2009
).7.
A. G.
Dijkstra
and Y.
Tanimura
, New J. Phys.
14
, 073027
(2012
).8.
A.
Beige
, D.
Braun
, and P. L.
Knight
, New J. Phys.
2
, 22
(2000
).9.
A.
Beige
, D.
Braun
, B.
Tregenna
, and P. L.
Knight
, Phys. Rev. Lett.
85
, 1762
(2000
).10.
P.
Facchi
, D. A.
Lidar
, and S.
Pascazio
, Phys. Rev. A
69
, 032314
(2004
).11.
J.
Busch
and A.
Beige
, J. Phys.: Conf. Ser.
254
, 012009
(2010
).12.
N. V.
Vitanov
, A. A.
Rangelov
, B. W.
Shore
, and K.
Bergmann
, Rev. Mod. Phys.
89
, 015006
(2017
).13.
J.
Oreg
, F. T.
Hioe
, and J. H.
Eberly
, Phys. Rev. A
29
, 690
(1984
).14.
K.
Bergmann
, H.
Theuer
, and B. W.
Shore
, Rev. Mod. Phys.
70
, 1003
(1998
).15.
A.
Kuhn
, M.
Hennrich
, and G.
Rempe
, Phys. Rev. Lett.
89
, 067901
(2002
).16.
G. S.
Vasilev
, D.
Ljunggren
, and A.
Kuhn
, New J. Phys.
12
, 063024
(2010
).17.
D. A.
Gangloff
, G.
Éthier-Majcher
, C.
Lang
, E. V.
Denning
, J. H.
Bodey
, D. M.
Jackson
, E.
Clarke
, M.
Hugues
, C. L.
Gall
, and M.
Atatüre
, Science
364
, 62
(2019
).18.
J.
Wu
, R. J.
Silbey
, and J.
Cao
, Phys. Rev. Lett.
110
, 200402
(2013
).19.
A.
Ishizaki
and G. R.
Fleming
, Proc. Natl. Acad. Sci. U. S. A.
106
, 17255
(2009
).20.
J.
Cao
and R. J.
Silbey
, J. Phys. Chem. A
113
, 13825
(2009
).21.
P.
Rebentrost
, M.
Mohseni
, I.
Kassal
, S.
Lloyd
, and A.
Aspuru-Guzik
, New J. Phys.
11
, 033003
(2009
).22.
F.
Caruso
, A. W.
Chin
, A.
Datta
, S. F.
Huelga
, and M. B.
Plenio
, J. Chem. Phys.
131
, 105106
(2009
).23.
M.
Maiuri
, E. E.
Ostroumov
, R. G.
Saer
, R. E.
Blankenship
, and G. D.
Scholes
, Nat. Chem.
10
, 177
(2018
).24.
25.
W. B.
Davis
, M. R.
Wasielewski
, M. A.
Ratner
, V.
Mujica
, and A.
Nitzan
, J. Phys. Chem. A
101
, 6158
(1997
).26.
V.
May
, J. Chem. Phys.
129
, 114109
(2008
).27.
Y.
Tanimura
, J. Phys. Soc. Jpn.
75
, 082001
(2006
).28.
29.
L. A.
Pachon
, J. D.
Botero
, and P.
Brumer
, J. Phys. B: At., Mol. Opt. Phys.
50
, 184003
(2017
).30.
Q.
Shi
and E.
Geva
, J. Chem. Phys.
119
, 011773
(2013
).31.
A. G.
Dijkstra
, C.
Wang
, J.
Cao
, and G. R.
Fleming
, J. Phys. Chem. Lett.
6
, 627
(2015
).32.
E.
Thyrhaug
, R.
Tempelaar
, M. J. P.
Alcocer
, K.
Žídek
, D.
Bína
, J.
Knoester
, T. l. C.
Jansen
, and D.
Zigmantas
, Nat. Chem.
10
, 780
(2018
).33.
M.
Tanaka
and Y.
Tanimura
, J. Phys. Soc. Jpn.
78
, 073802
(2009
).34.
T. N.
Do
, M. F.
Gelin
, and H.-S.
Tan
, J. Chem. Phys.
147
, 144103
(2017
).35.
R.
Tempelaar
, F. C.
Spano
, J.
Knoester
, and T. l. C.
Jansen
, J. Phys. Chem. Lett.
5
, 1505
(2014
).36.
37.
C.
Supritz
, A.
Engelmann
, and P.
Reineker
, J. Lumin.
119
, 337
(2006
).38.
R. H.
Dicke
, Phys. Rev.
93
, 99
(1954
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.