Nuclear magnetic resonance (NMR) is sensitive to dynamics on a wide range of correlation times. Recently, we have shown that analysis of relaxation rates via fitting to a correlation function with a small number of exponential terms could yield a biased characterization of molecular motion in solid-state NMR due to limited sensitivity of experimental data to certain ranges of correlation times. We introduced an alternative approach based on “detectors” in solid-state NMR, for which detector responses characterize motion for a range of correlation times and reduce potential bias resulting from the use of simple models for the motional correlation functions. Here, we show that similar bias can occur in the analysis of solution-state NMR relaxation data. We have thus adapted the detector approach to solution-state NMR, specifically separating overall tumbling motion from internal motions and accounting for contributions of chemical exchange to transverse relaxation. We demonstrate that internal protein motions can be described with detectors when the overall motion and the internal motions are statistically independent. We illustrate the detector analysis on ubiquitin with typical relaxation data sets recorded at a single high magnetic field or at multiple high magnetic fields and compare with results of model-free analysis. We also compare our methodology to LeMaster’s method of dynamics analysis.

1.
A. G. I.
Palmer
,
Chem. Rev.
104
(
8
),
3623
(
2004
).
2.
C.
Charlier
,
S. F.
Cousin
, and
F.
Ferrage
,
Chem. Soc. Rev.
45
(
9
),
2410
(
2016
).
3.
J. R.
Brainard
and
A.
Szabo
,
Biochemistry
20
(
16
),
4618
(
1981
).
4.
V.
Calandrini
,
D.
Abergel
, and
G. R.
Kneller
,
J. Chem. Phys.
133
(
14
),
145101
(
2010
).
5.
V.
Tugarinov
,
Z.
Liang
,
Y. E.
Shapiro
,
J. H.
Freed
, and
E.
Meirovitch
,
J. Am. Chem. Soc.
123
(
13
),
3055
(
2001
).
6.
G. M.
Clore
,
A.
Szabo
,
A.
Bax
,
L. E.
Kay
,
P. C.
Driscoll
, and
A. M.
Gronenborn
,
J. Am. Chem. Soc.
112
,
4989
(
1990
).
7.
B.
Halle
,
J. Chem. Phys.
131
,
224507
(
2009
).
8.
L. E.
Kay
,
D. A.
Torchia
, and
A.
Bax
,
Biochemistry
28
(
23
),
8972
(
2002
).
9.
G.
Lipari
and
A.
Szabo
,
J. Am. Chem. Soc.
104
(
17
),
4546
(
1982
).
10.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon Press
,
Oxford
,
1961
).
11.
M. P.
Nicholas
,
E.
Eryilmaz
,
F.
Ferrage
,
D.
Cowburn
, and
R.
Ghose
,
Prog. Nucl. Magn. Reson. Spectrosc.
57
(
2
),
111
(
2010
).
12.
A. A.
Smith
,
M.
Ernst
, and
B. H.
Meier
,
Angew. Chem., Int. Ed.
56
(
44
),
13590
(
2017
).
13.
A. A.
Smith
,
M.
Ernst
, and
B. H.
Meier
,
J. Chem. Phys.
148
(
4
),
045104
(
2018
).
14.
N. A.
Farrow
,
O.
Zhang
,
A.
Szabo
,
D. A.
Torchia
, and
L. E.
Kay
,
J. Biomol. NMR
6
(
2
),
153
(
1995
).
15.
R.
Ishima
and
K.
Nagayama
,
J. Magn. Res., Ser. B
108
(
1
),
73
(
1995
).
16.
J.
Peng
and
G.
Wagner
,
J. Magn. Reson.
98
(
2
),
308
(
1992
).
17.
P.
Kaderavek
,
V.
Zapletal
,
R.
Fiala
,
P.
Srb
,
P.
Padrta
,
J. P.
Precechtelova
,
M.
Soltesova
,
J.
Kowalewski
,
G.
Widmalm
,
J.
Chmelik
,
V.
Sklenar
, and
L.
Zidek
,
J. Magn. Reson.
266
,
23
(
2016
).
18.
A.
Hsu
,
P. A.
O’Brien
,
S.
Bhattacharya
,
M.
Rance
, and
A. G.
Palmer
 III
,
Methods
138-139
,
76
(
2018
).
19.
J. F.
Lefevre
,
K. T.
Dayie
,
J. W.
Peng
, and
G.
Wagner
,
Biochemistry
35
(
8
),
2674
(
1996
).
20.
S. N.
Khan
,
C.
Charlier
,
R.
Augustyniak
,
N.
Salvi
,
V.
Dejean
,
G.
Bodenhausen
,
O.
Lequin
,
P.
Pelupessy
, and
F.
Ferrage
,
Biophys. J.
109
(
5
),
988
(
2015
).
21.
D. M.
LeMaster
,
J. Biomol. NMR
6
(
4
),
366
(
1995
).
22.
A.
Hsu
,
F.
Ferrage
, and
A. G.
Palmer
 III
,
Biophys. J.
115
(
12
),
2301
(
2018
).
23.
A. A.
Smith
,
M.
Ernst
,
S.
Riniker
, and
B. H.
Meier
,
Angew. Chem., Int. Ed.
58
,
9383
(
2019
).
24.
A. A.
Smith
,
M.
Ernst
, and
B. H.
Meier
, Distortion Free Relaxation Analysis Technique software, URL: http://difrate.sourceforge.net,
2018
.
25.
B.
Halle
and
H.
Wennerström
,
J. Chem. Phys.
75
(
4
),
1928
(
1981
).
26.
P.
Ma
,
Y.
Xue
,
N.
Coquelle
,
J. D.
Haller
,
T.
Yuwen
,
I.
Ayala
,
O.
Mikhailovskii
,
D.
Willbold
,
J.-P.
Colletier
,
N. R.
Skrynnikov
, and
P.
Schanda
,
Nat. Commun.
6
,
8361
(
2015
).
27.
A.
Krushelnitsky
,
D.
Gauto
,
D. C.
Rodriguez Camargo
,
P.
Schanda
, and
K.
Saalwachter
,
J. Biomol. NMR
71
(
1
),
53
(
2018
).
28.
A. A.
Smith
,
E.
Testori
,
R.
Cadalbert
,
B. H.
Meier
, and
M.
Ernst
,
J. Biomol. NMR
65
(
3-4
),
171
(
2016
).
29.
O.
Walker
,
R.
Varadan
, and
D.
Fushman
,
J. Magn. Reson.
168
(
2
),
336
(
2004
).
30.
G.
Golub
and
W.
Kahan
,
J. Soc. Ind. Appl. Math. Ser. B. Num. Anal.
2
(
2
),
205
(
1965
).
31.
C.
Charlier
,
S. N.
Khan
,
T.
Marquardsen
,
P.
Pelupessy
,
V.
Reiss
,
D.
Sakellariou
,
G.
Bodenhausen
,
F.
Engelke
, and
F.
Ferrage
,
J. Am. Chem. Soc.
135
(
49
),
18665
(
2013
).
32.
H.
Akaike
,
IEEE Trans. Autom. Control
19
(
6
),
716
(
1974
).
33.
F.
Bayer
and
F.
Cribari-Neto
,
TEST
24
(
4
),
776
(
2015
); e-print arXiv:1405.4525 [stat.CO].
34.
J.
Shang
and
J.
Cavanaugh
,
Comput. Stat. Data. Anal.
52
(
4
),
2004
(
2008
).
35.
C. M.
Hurvich
and
C.-L.
Tsai
,
J. Time Ser. Anal.
14
(
3
),
271
(
1993
).
36.
N.
Sugiura
,
Commun. Stat.: Theory Methods
7
,
13
(
1978
).
37.
F.
Massi
,
M. J.
Grey
, and
A. G.
Palmer
 III
,
Protein Sci.
14
(
3
),
735
(
2005
).
38.
D. F.
Hansen
,
H.
Feng
,
Z.
Zhou
,
Y.
Bai
, and
L. E.
Kay
,
J. Am. Chem. Soc.
131
(
44
),
16257
(
2009
).
39.
D.
Fushman
,
Methods Mol. Biol.
831
,
485
(
2012
).
40.
S. F.
Cousin
,
P.
Kaderavek
,
N.
Bolik-Coulon
,
Y.
Gu
,
C.
Charlier
,
L.
Carlier
,
L.
Bruschweiler-Li
,
T.
Marquardsen
,
J. M.
Tyburn
,
R.
Bruschweiler
, and
F.
Ferrage
,
J. Am. Chem. Soc.
140
(
41
),
13456
(
2018
).

Supplementary Material

You do not currently have access to this content.