The expressions for the minimal work of aggregate formation as a function of the aggregation number and monomer concentration for a system with a limited number of monomers and a fixed volume have additional terms in comparison with a bulk metastable phase. The role of these terms has been analyzed in the case of droplet homogeneous nucleation and micellization in a nonionic surfactant solution. The appearance of the potential well and direct and reversal aggregation barriers in such systems and their dependence on the system parameters and monomer concentration have been considered and compared.

1.
A. I.
Rusanov
, “
The thermodynamics of processes of new-phase formation
,”
Russ. Chem. Rev.
1964
(
33
),
385
399
.
2.
A. I.
Rusanov
,
Phasengleichgewichten und Grenzflachenerscheinungen
(
Akademie-Verlag
,
Berlin
,
1978
).
3.
C. A.
Ward
,
P.
Tikuisis
, and
R. D.
Venter
, “
Stability of bubbles in a closed volume of liquid-gas solution
,”
J. Appl. Phys.
53
,
6076
6084
(
1982
).
4.
J.
Schmelzer
and
H.
Ulbricht
, “
Thermodynamics of finite systems and the kinetics of first-order phase transitions
,”
J. Colloid Interface Sci.
117
,
325
338
(
1987
).
5.
J.
Schmelzer
and
F.
Schweitzer
, “
Ostwald ripening of bubbles in liquid-gas solutions
,”
J. Non-Equilib. Thermodyn.
12
,
255
270
(
1987
).
6.
J.
Schmelzer
, “
Formation and growth of bubbles in one-component closed isochoric systems
,”
Z. Phys. Chem.
269
,
633
646
(
1988
).
7.
H.
Ulbricht
,
J.
Schmelzer
,
R.
Mahnke
, and
F.
Schweitzer
,
Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions
(
Teubner
,
Leipzig
,
1988
).
8.
J.
Schmelzer
and
I.
Gutzow
, “
On the kinetic description of Ostwald ripening in elastic media
,”
Ζ. Phys. Chem.
269
,
753
767
(
1988
).
9.
J.
Schmelzer
and
F.
Schweitzer
, “
Thermodynamic limitations for homogeneous nucleation in pores
,”
Ζ. Phys. Chem.
271
,
565
574
(
1990
).
10.
J. W. P.
Schmelzer
and
A. S.
Abyzov
, “
Comments on the thermodynamic analysis of nucleation in confined space
,”
J. Non-Cryst. Solids
384
,
2
7
(
2014
).
11.
J.
Schmelzer
and
F.
Schweitzer
, “
On the kinetic description of condensation in binary vapours
,”
Ann. Phys.
44
,
283
296
(
1987
).
12.
D.
Reguera
and
H.
Reiss
, “
Nucleation in confined ideal binary mixtures: The Renninger–Wilemski problem revisited
,”
J. Chem. Phys.
119
,
1533
1546
(
2003
).
13.
A. K.
Shchekin
and
I. V.
Shabaev
, “
Activation barriers for the complete dissolution of condensation nucleus and its reverse crystallization in droplets in the undersaturated solvent vapor
,”
Colloid J.
72
,
432
439
(
2010
).
14.
A. K.
Shchekin
,
I. V.
Shabaev
, and
O.
Hellmuth
, “
Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles
,”
J. Chem. Phys.
138
(
5
),
054704
(
2013
).
15.
Z.
Kožíšek
and
P.
Demo
, “
Influence of initial conditions on homogeneous nucleation kinetics in a closed system
,”
J. Chem. Phys.
123
,
144502
(
2005
).
16.
A. M.
Gusak
,
F.
Hodaj
, and
T. V.
Zaporozhets
, “
Thermodynamics of void nucleation in nanoparticles
,”
Philos. Mag. Lett.
91
,
741
750
(
2011
).
17.
V. G.
Dubrovskii
, “
Refinement of nucleation theory for vapor–liquid–solid nanowires
,”
Cryst. Growth Des.
17
(
5
),
2589
2593
(
2017
).
18.
D.
Sakurai
,
S.
Paul
,
W.-L.
Hsu
,
H.
Daiguji
, and
F.
Takemura
, “
Thermodynamic stability analysis of microbubbles confined in a liquid droplet
,”
J. Phys. Chem. B
123
,
542
550
(
2019
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part 1
, 3rd ed. (
Butterworth–Heinemann
,
1980
), Vol. 5.
20.
S.
Ono
and
S.
Kondo
,
Molecular Theory of Surface Tension in Liquids
(
Springer
,
Berlin
,
1960
).
21.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover Publications
,
Oxford
,
2003
).
22.
A. K.
Shchekin
, “
Influence of the droplet size on the heat of transfer of a vapor-phase molecule into a droplet
,”
Colloid J. USSR
48
(
5
),
823
829
(
1986
).
23.
A. I.
Rusanov
,
F. M.
Kuni
, and
A. K.
Shchekin
, “
Unified approach to the theory of homogeneous and heterogeneous nucleation
,”
Colloid J. USSR
49
(
2
),
266
271
(
1987
).
24.
A. I.
Rusanov
,
F. M.
Kuni
,
A. P.
Grinin
, and
A. K.
Shchekin
, “
Thermodynamic characteristics of micellization in the droplet model of surfactant spherical molecular aggregate
,”
Colloid J.
64
(
5
),
605
615
(
2002
).
25.
A. I.
Rusanov
,
A. P.
Grinin
,
F. M.
Kuni
, and
A. K.
Shchekin
, “
Nanostructural models of micelles and primicellar aggregates
,”
Russ. J. Gen. Chem.
72
,
607
621
(
2002
).
26.
A. P.
Grinin
,
A. I.
Rusanov
,
F. M.
Kuni
, and
A. K.
Shchekin
, “
Thermodynamic characteristics of a spherical molecular surfactant aggregate in a quasi-droplet model
,”
Colloid J.
65
,
145
154
(
2003
).
27.
F. M.
Kuni
,
A. K.
Shchekin
,
A. P.
Grinin
, and
A. I.
Rusanov
, “
Thermodynamic characteristics of the micellization in droplet and quasi-droplet models of surfactant molecular aggregates with account of experimental data on equilibrium micelle distribution
,”
Colloid J.
65
,
459
468
(
2003
).
28.
X.
Zhang
,
J. G.
Arce Nunez
, and
J. T.
Kindt
, “
Derivation of micelle size-dependent free energies of aggregation for octyl phosphocholine from molecular dynamics simulation
,”
Fluid Phase Equilib.
485
,
83
93
(
2019
).
29.
A.
Halperin
, “
Polymeric micelles: A star model
,”
Macromolecules
20
,
2943
2946
(
1987
).
30.
I. A.
Nyrkova
and
A. N.
Semenov
, “
On the theory of micellization kinetics
,”
Macromol. Theory Simul.
14
,
569
585
(
2005
).
31.
N. A.
Volkov
,
M. V.
Posysoev
, and
A. K.
Shchekin
, “
The effect of simulation-cell size on the diffusion coefficient of an ionic surfactant aggregate
,”
Colloid J.
80
(
3
),
248
254
(
2018
).
32.
N. A.
Volkov
,
A. K.
Shchekin
,
N. V.
Tuzov
,
T. S.
Lebedeva
, and
M. A.
Kazantseva
, “
Molecular modeling of ionic aggregates at several concentrations of SDS in aqueous solution
,”
J. Mol. Liq.
236
,
414
421
(
2017
).
33.
A. I.
Rusanov
,
A. K.
Shchekin
, and
N. A.
Volkov
, “
Diffusion in micellar systems: Theory and molecular modeling
,”
Russ. Chem. Rev.
86
(
7
),
567
588
(
2017
).
34.
A. K.
Shchekin
,
L. Ts.
Adzhemyan
,
I. A.
Babintsev
, and
N. A.
Volkov
, “
Kinetics of aggregation and relaxation in micellar surfactant solutions
,”
Colloid J.
80
,
107
140
(
2018
).
35.
L. Ts.
Adzhemyan
,
Yu. A.
Eroshkin
,
I. A.
Babintsev
, and
A. K.
Shchekin
, “
Analytical description of molecular mechanism of fast relaxation of spherical micelles with the extended Becker-Döring differential equation
,”
J. Mol. Liq.
284
,
725
734
(
2019
).
36.
I. A.
Babintsev
,
L. T.
Adzhemyan
, and
A. K.
Shchekin
, “
Micellization and relaxation in solution with spherical micelles via the discrete Becker-Döring equations at different total surfactant concentrations
,”
J. Chem. Phys.
137
,
044902
(
2012
).
37.
A. K.
Shchekin
,
I. A.
Babintsev
, and
L. Ts.
Adzhemyan
, “
Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates
,”
J. Chem. Phys.
145
,
174105
(
2016
).
38.
I. A.
Babintsev
,
L. Ts.
Adzhemyan
, and
A. K.
Shchekin
, “
Kinetics of micellisation and relaxation of cylindrical micelles described by the difference Becker–Döring equation
,”
Soft Matter
10
,
2619
2631
(
2014
).
39.
I. A.
Babintsev
,
A. K.
Shchekin
, and
L. Ts.
Adzhemyan
, “
Numerical solution of generalized Smoluchowski equations for cylindrical micelles
,”
Colloid J.
80
(
5
),
459
466
(
2018
).
40.
L. Ts.
Adzhemyan
,
Yu. A.
Eroshkin
,
A. K.
Shchekin
, and
I. A.
Babintsev
, “
Improved kinetic description of fast relaxation of cylindrical micelles
,”
Physica A
518
,
299
311
(
2019
).
You do not currently have access to this content.