The leading order terms in a curvature expansion of surface tension, the Tolman length (first order), and rigidities (second order) have been shown to play an important role in the description of nucleation processes. This work presents general and rigorous expressions to compute these quantities for any nonlocal density functional theory (DFT). The expressions hold for pure fluids and mixtures and reduce to the known expressions from density gradient theory (DGT). The framework is applied to a Helmholtz energy functional based on the perturbed chain polar statistical associating fluid theory (PCP-SAFT) and is used in an extensive investigation of curvature corrections for pure fluids and mixtures. Predictions from the full DFT are compared to two simpler theories: predictive DGT, which has a density and temperature dependent influence matrix derived from DFT, and DGT, where the influence parameter reproduces the surface tension predicted from DFT. All models are based on the same equation of state and predict similar Tolman lengths and spherical rigidities for small molecules, but the deviations between DFT and DGT increase with chain length for alkanes. For all components except water, we find that DGT underpredicts the value of the Tolman length but overpredicts the value of the spherical rigidity. An important basis for the calculation is an accurate prediction of the planar surface tension. Therefore, further work is required to accurately extract Tolman lengths and rigidities of alkanols because DFT with PCP-SAFT does not accurately predict surface tensions of these fluids.

1.
K.
Iland
,
J.
Wölk
,
R.
Strey
, and
D.
Kashchiev
, “
Argon nucleation in a cryogenic pulse chamber
,”
J. Chem. Phys.
127
,
154506
(
2007
).
2.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer Science & Business Media
,
2006
).
3.
P. R.
ten Wolde
and
D.
Frenkel
, “
Computer simulation study of gas-liquid nucleation in a Lennard-Jones system
,”
J. Chem. Phys.
109
,
9901
(
1998
).
4.
Ø.
Wilhelmsen
,
D.
Bedeaux
, and
D.
Reguera
, “
Communication: Tolman length and rigidity constants of water and their role in nucleation
,”
J. Chem. Phys.
142
,
171103
(
2015
).
5.
V. D.
Nguyen
,
F. C.
Schoemaker
,
E. M.
Blokhuis
, and
P.
Schall
, “
Measurement of the curvature-dependent surface tension in nucleating colloidal liquids
,”
Phys. Rev. Lett.
121
,
246102
(
2018
).
6.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch.
28
,
693
(
1973
).
7.
S.
Kim
,
D.
Kim
,
J.
Kim
,
S.
An
, and
W.
Jhe
, “
Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale
,”
Phys. Rev. X
8
,
041046
(
2018
).
8.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
9.
Ø.
Wilhelmsen
,
D.
Bedeaux
, and
D.
Reguera
, “
Tolman length and rigidity constants of the Lennard-Jones fluid
,”
J. Chem. Phys.
142
,
064706
(
2015
).
10.
N.
Bruot
and
F.
Caupin
, “
Curvature dependence of the liquid-vapor surface tension beyond the Tolman approximation
,”
Phys. Rev. Lett.
116
,
056102
(
2016
).
11.
A.
Aasen
,
E. M.
Blokhuis
, and
Ø.
Wilhelmsen
, “
Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples
,”
J. Chem. Phys.
148
,
204702
(
2018
).
12.
P.
Rehner
and
J.
Gross
, “
Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory
,”
J. Chem. Phys.
148
,
164703
(
2018
).
13.
E. M.
Blokhuis
and
J.
Kuipers
, “
Thermodynamic expressions for the Tolman length
,”
J. Chem. Phys.
124
,
074701
(
2006
).
14.
Z.
Li
and
J.
Wu
, “
Toward a quantitative theory of ultrasmall liquid droplets and vapor liquid nucleation
,”
Ind. Eng. Chem. Res.
47
,
4988
4995
(
2007
).
15.
B. J.
Block
,
S. K.
Das
,
M.
Oettel
,
P.
Virnau
, and
K.
Binder
, “
Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study
,”
J. Chem. Phys.
133
,
154702
(
2010
).
16.
A.
Tröster
,
M.
Oettel
,
B.
Block
,
P.
Virnau
, and
K.
Binder
, “
Numerical approaches to determine the interface tension of curved interfaces from free energy calculations
,”
J. Chem. Phys.
136
,
064709
(
2012
).
17.
A. E.
van Giessen
and
E. M.
Blokhuis
, “
Determination of curvature corrections to the surface tension of a liquid–vapor interface through molecular dynamics simulations
,”
J. Chem. Phys.
116
,
302
310
(
2002
).
18.
Y. A.
Lei
,
T.
Bykov
,
S.
Yoo
, and
X. C.
Zeng
, “
The Tolman length: Is it positive or negative?
,”
J. Am. Chem. Soc.
127
,
15346
15347
(
2005
).
19.
M.
Horsch
,
H.
Hasse
,
A. K.
Shchekin
,
A.
Agarwal
,
S.
Eckelsbach
,
J.
Vrabec
,
E. A.
Müller
, and
G.
Jackson
, “
Excess equimolar radius of liquid drops
,”
Phys. Rev. E
85
,
031605
(
2012
).
20.
A. E.
van Giessen
and
E. M.
Blokhuis
, “
Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations
,”
J. Chem. Phys.
131
,
164705
(
2009
).
21.
J. G.
Sampayo
,
A.
Malijevský
,
E. A.
Müller
,
E.
de Miguel
, and
G.
Jackson
, “
Communications: Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension
,”
J. Chem. Phys.
132
,
141101
(
2010
).
22.
G.
Menzl
,
M. A.
Gonzalez
,
P.
Geiger
,
F.
Caupin
,
J. L. F.
Abascal
,
C.
Valeriani
, and
C.
Dellago
, “
Molecular mechanism for cavitation in water under tension
,”
Proc. Natl. Acad. Sci. U. S. A
113
,
13582
13587
(
2016
).
23.
M. N.
Joswiak
,
N.
Duff
,
M. F.
Doherty
, and
B.
Peters
, “
Size-dependent surface free energy and Tolman-corrected droplet nucleation of TIP4P/2005 water
,”
J. Phys. Chem. Lett.
4
,
4267
4272
(
2013
).
24.
M. N.
Joswiak
,
R.
Do
,
M. F.
Doherty
, and
B.
Peters
, “
Energetic and entropic components of the Tolman length for mw and TIP4P/2005 water nanodroplets
,”
J. Chem. Phys.
145
,
204703
(
2016
).
25.
M.
Kanduč
, “
Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets
,”
J. Chem. Phys.
147
,
174701
(
2017
).
26.
K.-Y.
Leong
and
F.
Wang
, “
A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation
,”
J. Chem. Phys.
148
,
144503
(
2018
).
27.
E. M.
Blokhuis
and
A. E.
van Giessen
, “
Density functional theory of a curved liquid-vapour interface: Evaluation of the rigidity constants
,”
J. Phys.: Condens. Matter
25
,
225003
(
2013
).
28.
M. P. A.
Fisher
and
M.
Wortis
, “
Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis
,”
Phys. Rev. B
29
,
6252
6260
(
1984
).
29.
E. M.
Blokhuis
and
D.
Bedeaux
, “
Van der Waals theory of curved surfaces
,”
Mol. Phys.
80
,
705
720
(
1993
).
30.
A. E.
van Giessen
,
E. M.
Blokhuis
, and
D. J.
Bukman
, “
Mean field curvature corrections to the surface tension
,”
J. Chem. Phys.
108
,
1148
1156
(
1998
).
31.
J. C.
Barrett
, “
On the thermodynamic expansion of the nucleation free-energy barrier
,”
J. Chem. Phys.
131
,
084711
(
2009
).
32.
P.
Rehner
and
J.
Gross
, “
Predictive density gradient theory based on nonlocal density functional theory
,”
Phys. Rev. E
98
,
063312
(
2018
).
33.
F. O.
Koenig
, “
On the thermodynamic relation between surface tension and curvature
,”
J. Chem. Phys.
18
,
449
459
(
1950
).
34.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
983
(
1989
).
35.
P.
Tarazona
, “
Free-energy density functional for hard spheres
,”
Phys. Rev. A
31
,
2672
2679
(
1985
).
36.
J.
Mairhofer
and
J.
Gross
, “
Numerical aspects of classical density functional theory for one-dimensional vapor-liquid interfaces
,”
Fluid Phase Equilib.
444
,
1
12
(
2017
).
37.
D. G.
Anderson
, “
Iterative procedures for nonlinear integral equations
,”
J. Assoc. Comput. Mach.
12
,
547
560
(
1965
).
38.
C.
Miqueu
,
B.
Mendiboure
,
C.
Graciaa
, and
J.
Lachaise
, “
Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces
,”
Fluid Phase Equilib.
218
,
189
203
(
2004
).
39.
C.
Miqueu
,
B.
Mendiboure
,
A.
Graciaa
, and
J.
Lachaise
, “
Modeling of the surface tension of multicomponent mixtures with the gradient theory of fluid interfaces
,”
Ind. Eng. Chem. Res.
44
,
3321
3329
(
2005
).
40.
J.
Mairhofer
and
J.
Gross
, “
Modeling of interfacial properties of multicomponent systems using density gradient theory and PCP-SAFT
,”
Fluid Phase Equilib.
439
,
31
42
(
2017
).
41.
J.
Kou
,
S.
Sun
, and
X.
Wang
, “
Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces
,”
Comput. Methods Appl. Mech. Eng.
292
,
92
106
(
2015
), special issue on Advances in Simulations of Subsurface Flow and Transport (Honoring Professor Mary F. Wheeler).
42.
X.
Liang
,
M. L.
Michelsen
, and
G. M.
Kontogeorgis
, “
A density gradient theory based method for surface tension calculations
,”
Fluid Phase Equilib.
428
,
153
163
(
2016
), Theo W. de Loos Festschrift.
43.
J.
Gross
and
G.
Sadowski
, “
Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules
,”
Ind. Eng. Chem. Res.
40
,
1244
1260
(
2001
).
44.
J.
Gross
, “
An equation-of-state contribution for polar components: Quadrupolar molecules
,”
AIChE J.
51
,
2556
2568
(
2005
).
45.
J.
Gross
and
J.
Vrabec
, “
An equation-of-state contribution for polar components: Dipolar molecules
,”
AIChE J.
52
,
1194
1204
(
2006
).
46.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
47.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
, “
Fundamental measure theory for hard-sphere mixtures revisited: The white bear version
,”
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
48.
Y.-X.
Yu
and
J.
Wu
, “
Structures of hard-sphere fluids from a modified fundamental-measure theory
,”
J. Chem. Phys.
117
,
10156
10164
(
2002
).
49.
E.
Kierlik
and
M. L.
Rosinberg
, “
Free-energy density functional for the inhomogeneous hard-sphere fluid: Application to interfacial adsorption
,”
Phys. Rev. A
42
,
3382
3387
(
1990
).
50.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
472
(
1970
).
51.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, “
Equilibrium thermodynamic properties of the mixture of hard spheres
,”
J. Chem. Phys.
54
,
1523
1525
(
1971
).
52.
N. F.
Carnahan
and
K. E.
Starling
, “
Equation of state for nonattracting rigid spheres
,”
J. Chem. Phys.
51
,
635
636
(
1969
).
53.
S.
Tripathi
and
W. G.
Chapman
, “
Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures
,”
J. Chem. Phys.
122
,
094506
(
2005
).
54.
S.
Tripathi
and
W. G.
Chapman
, “
Microstructure and thermodynamics of inhomogeneous polymer blends and solutions
,”
Phys. Rev. Lett.
94
,
087801
(
2005
).
55.
Y.-X.
Yu
and
J.
Wu
, “
A fundamental-measure theory for inhomogeneous associating fluids
,”
J. Chem. Phys.
116
,
7094
7103
(
2002
).
56.
E.
Sauer
and
J.
Gross
, “
Classical density functional theory for liquid–fluid interfaces and confined systems: A functional for the perturbed-chain polar statistical associating fluid theory equation of state
,”
Ind. Eng. Chem. Res.
56
,
4119
4135
(
2017
).
57.
E.
Sauer
,
A.
Terzis
,
M.
Theiss
,
B.
Weigand
, and
J.
Gross
, “
Prediction of contact angles and density profiles of sessile droplets using classical density functional theory based on the PCP-SAFT equation of state
,”
Langmuir
34
,
12519
12531
(
2018
).
58.
E.
Sauer
and
J.
Gross
, “
Prediction of adsorption isotherms and selectivities: Comparison between classical density functional theory based on the perturbed-chain statistical associating fluid theory equation of state and ideal adsorbed solution theory
,”
Langmuir
35
,
11690
11701
(
2019
).
59.
C.
Klink
and
J.
Gross
, “
A density functional theory for vapor-liquid interfaces of mixtures using the perturbed-chain polar statistical associating fluid theory equation of state
,”
Ind. Eng. Chem. Res.
53
,
6169
6178
(
2014
).
60.
A.
Mulero
,
I.
Cachadiña
, and
M. I.
Parra
, “
Recommended correlations for the surface tension of common fluids
,”
J. Phys. Chem. Ref. Data
41
,
043105
(
2012
).
61.
International Association for the Properties of Water and Steam
, IAPWS R1-76(2014), revised release on surface tension of ordinary water substance,
2014
.
62.
J.
Mairhofer
and
J.
Gross
, “
Modeling properties of the one-dimensional vapor-liquid interface: Application of classical density functional and density gradient theory
,”
Fluid Phase Equilib.
458
,
243
252
(
2018
).
63.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry Webbook
, NIST Standard Reference Database Number 69 (
National Institute of Standards and Technology
,
Gaithersburg, MD
,
20899
), http://webbook.nist.gov; retrieved July 15, 2016.
64.
S. H.
Huang
and
M.
Radosz
, “
Equation of state for small, large, polydisperse, and associating molecules
,”
Ind. Eng. Chem. Res.
29
,
2284
2294
(
1990
).
65.
G. M.
Kontogeorgis
,
E. C.
Voutsas
,
I. V.
Yakoumis
, and
D. P.
Tassios
, “
An equation of state for associating fluids
,”
Ind. Eng. Chem. Res.
35
,
4310
4318
(
1996
).
66.
J.
Fike
and
J.
Alonso
, “
The development of hyper-dual numbers for exact second-derivative calculations
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2011
).
67.
F.
Diewald
,
M.
Heier
,
M.
Horsch
,
C.
Kuhn
,
K.
Langenbach
,
H.
Hasse
, and
R.
Müller
, “
Three-dimensional phase field modeling of inhomogeneous gas-liquid systems using the pets equation of state
,”
J. Chem. Phys.
149
,
064701
(
2018
).

Supplementary Material

You do not currently have access to this content.