Hybrid materials of earth abundant transition metal dichalcogenides and noble metal nanoparticles, such as molybdenum sulfide (MoSx) and gold nanoparticles, exhibit synergistic effects that can enhance electrocatalytic reactions. However, most current hybrid MoSx-gold synthesis requires an energy intensive heat source of >500 °C or chemical plating to achieve deposition of MoSx on the gold surface. Herein, we demonstrate the direct overgrowth of MoSx over colloidal nanoporous gold (NPG), conducted feasibly under ambient conditions, to form hybrid particles with enhanced electrocatalytic performance toward hydrogen evolution reaction. Our strategy exploits the localized surface plasmon resonance-mediated photothermal heating of NPG to achieve >230 °C surface temperature, which induces the decomposition of the (NH4)2MoS4 precursor and direct overgrowth of MoSx over NPG. By tuning the concentration ratio between the precursor and NPG, the amount of MoSx particles deposited can be systematically controlled from 0.5% to 2% of the Mo/(Au + Mo) ratio. Importantly, we find that the hybrid particles exhibit higher bridging and an apical S to terminal S atomic ratio than pure molybdenum sulfide, which gives rise to their enhanced electrocatalytic performance for hydrogen evolution reaction. We demonstrate that hybrid MoSx-NPG exhibits >30 mV lower onset potential and a 1.7-fold lower Tafel slope as compared to pure MoSx. Our methodology provides an energy- and cost-efficient synthesis pathway, which can be extended to the synthesis of various functional hybrid structures with unique properties for catalysis and sensing applications.

1.
P.
Zuo
,
L.
Jiang
,
X.
Li
,
B.
Li
,
Y.
Xu
,
X.
Shi
,
P.
Ran
,
T.
Ma
,
D.
Li
,
L.
Qu
,
Y.
Lu
, and
C. P.
Grigoropoulos
,
ACS Appl. Mater. Interfaces
9
(
8
),
7447
7455
(
2017
).
2.
A.
Ganguly
,
O.
Trovato
,
S.
Duraisamy
,
J.
Benson
,
Y.
Han
,
C.
Satriano
, and
P.
Papakonstantinou
,
J. Phys. Chem. C
123
(
16
),
10646
10657
(
2019
).
3.
K. F.
Mak
and
J.
Shan
,
Nat. Photonics
10
,
216
(
2016
).
4.
S.
Pedireddy
,
H. K.
Lee
,
W. W.
Tjiu
,
I. Y.
Phang
,
H. R.
Tan
,
S. Q.
Chua
,
C.
Troadec
, and
X. Y.
Ling
,
Nat. Commun.
5
(
1
),
4947
(
2014
).
5.
Y.
Tan
,
P.
Liu
,
L.
Chen
,
W.
Cong
,
Y.
Ito
,
J.
Han
,
X.
Guo
,
Z.
Tang
,
T.
Fujita
,
A.
Hirata
, and
M. W.
Chen
,
Adv. Mater.
26
(
47
),
8023
8028
(
2014
).
6.
D.
Liu
,
W.
Xu
,
Q.
Liu
,
Q.
He
,
Y. A.
Haleem
,
C.
Wang
,
T.
Xiang
,
C.
Zou
,
W.
Chu
,
J.
Zhong
,
Z.
Niu
, and
L.
Song
,
Nano Res.
9
(
7
),
2079
2087
(
2016
).
7.
X.
Ge
,
L.
Chen
,
L.
Zhang
,
Y.
Wen
,
A.
Hirata
, and
M.
Chen
,
Adv. Mater.
26
(
19
),
3100
3104
(
2014
).
8.
A.
Lavie
,
L.
Yadgarov
,
L.
Houben
,
R.
Popovitz-Biro
,
T.-E.
Shaul
,
A.
Nagler
,
H.
Suchowski
, and
R.
Tenne
,
Nanotechnology
28
(
24
),
24LT03
(
2017
).
9.
S.
Pedireddy
,
H. K.
Lee
,
C. S. L.
Koh
,
J. M. R.
Tan
,
W. W.
Tjiu
, and
X. Y.
Ling
,
Small
12
(
33
),
4531
4540
(
2016
).
10.
J.
Biener
,
M. M.
Biener
,
R. J.
Madix
, and
C. M.
Friend
,
ACS Catal.
5
(
11
),
6263
6270
(
2015
).
11.
L. H.
Qian
,
A.
Inoue
, and
M. W.
Chen
,
Appl. Phys. Lett.
92
(
9
),
093113
(
2008
).
12.
Z.
Yang
,
X.
Han
,
H. K.
Lee
,
G. C.
Phan-Quang
,
C. S. L.
Koh
,
C. L.
Lay
,
Y. H.
Lee
,
Y.-E.
Miao
,
T.
Liu
,
I. Y.
Phang
, and
X. Y.
Ling
,
Nanoscale
10
(
34
),
16005
16012
(
2018
).
13.
C. A. R.
Chapman
,
L.
Wang
,
J.
Biener
,
E.
Seker
,
M. M.
Biener
, and
M. J.
Matthews
,
Nanoscale
8
(
2
),
785
795
(
2016
).
14.
G. M.
Santos
,
F.
Zhao
,
J.
Zeng
, and
W.-C.
Shih
,
Nanoscale
6
(
11
),
5718
5724
(
2014
).
15.
Y.
Zhao
,
L.
Kuai
,
Y.
Liu
,
P.
Wang
,
H.
Arandiyan
,
S.
Cao
,
J.
Zhang
,
F.
Li
,
Q.
Wang
,
B.
Geng
, and
H.
Sun
,
Sci. Rep.
5
,
8722
(
2015
).
16.
V.
Bernard
,
E.
Staffa
,
V.
Mornstein
, and
A.
Bourek
,
Phys. Med.
29
(
6
),
583
591
(
2013
).
17.
C.
Wang
and
S.
Erhan
,
J. Am. Oil Chem. Soc.
76
(
10
),
1211
1216
(
1999
).
18.
S.
Farid Uddin Farhad
,
K. M.
Abedin
,
M.
Rafiqul Islam
,
A. I.
Talukder
, and
A. F. M. Y.
Haider
,
J. Appl. Sci.
9
(
8
),
1538
1543
(
2009
).
19.
A.
Wittstock
,
J.
Biener
, and
M.
Bäumer
,
Phys. Chem. Chem. Phys.
12
(
40
),
12919
12930
(
2010
).
20.
Z.
Ye
,
J.
Yang
,
B.
Li
,
L.
Shi
,
H.
Ji
,
L.
Song
, and
H.
Xu
,
Small
13
(
21
),
1700111
(
2017
).
21.
Y.
Yan
,
B.
Xia
,
X.
Ge
,
Z.
Liu
,
J.-Y.
Wang
, and
X.
Wang
,
ACS Appl. Mater. Interfaces
5
(
24
),
12794
12798
(
2013
).
22.
H. W.
Wang
,
P.
Skeldon
, and
G. E.
Thompson
,
Surf. Coat. Technol.
91
(
3
),
200
207
(
1997
).
23.
Y.-H.
Chang
,
C.-T.
Lin
,
T.-Y.
Chen
,
C.-L.
Hsu
,
Y.-H.
Lee
,
W.
Zhang
,
K.-H.
Wei
, and
L.-J.
Li
,
Adv. Mater.
25
(
5
),
756
760
(
2013
).
24.
C. G.
Morales-Guio
and
X.
Hu
,
Acc. Chem. Res.
47
(
8
),
2671
2681
(
2014
).
25.
P.
Cao
,
J.
Peng
,
S.
Liu
,
Y.
Cui
,
Y.
Hu
,
B.
Chen
,
J.
Li
, and
M.
Zhai
,
Sci. Rep.
7
(
1
),
16048
(
2017
).
26.
Y.
Li
,
Y.
Yu
,
Y.
Huang
,
R. A.
Nielsen
,
W. A.
Goddard
 III
,
Y.
Li
, and
L.
Cao
,
ACS Catal.
5
(
1
),
448
455
(
2014
).
27.
J.
Xu
,
J.
Cui
,
C.
Guo
,
Z.
Zhao
,
R.
Jiang
,
S.
Xu
,
Z.
Zhuang
,
Y.
Huang
,
L.
Wang
, and
Y.
Li
,
Angew. Chem., Int. Ed.
55
(
22
),
6502
6505
(
2016
).

Supplementary Material

You do not currently have access to this content.