We analyze a new type of plasmon system arising from small metal nanoparticles linked by narrow conductive molecular bridges. In contrast to the well-known charge-transfer plasmons, the bridge in these systems consists only of a narrow conductive molecule or polymer in which the electrons move in a ballistic mode, showing quantum effects. The plasmonic system is studied by an original hybrid quantum-classical model accounting for the quantum effects, with the main parameters obtained from first-principles density functional theory simulations. We have derived a general analytical expression for the modified frequency of the plasmons and have shown that its frequency lies in the near-infrared (IR) region and strongly depends on the conductivity of the molecule, on the nanoparticle–molecule interface, and on the size of the system. As illustrated, we explored the plasmons in a system consisting of two small gold nanoparticles linked by a conjugated polyacetylene molecule terminated by sulfur atoms. It is argued that applications of this novel type of plasmon may have wide ramifications in the areas of chemical sensing and IR deep tissue imaging.

1.
A.
Uddin
and
X.
Yang
,
J. Nanosci. Nanotechnol.
14
,
1099
(
2014
).
2.
J.
Liu
,
H.
He
,
D.
Xiao
,
S.
Yin
,
W.
Ji
,
S.
Jiang
,
D.
Luo
,
B.
Wang
, and
Y.
Liu
,
Materials
11
,
1833
(
2018
).
3.
J.
Olson
,
S.
Dominguez-Medina
,
A.
Hoggard
,
L.-Y.
Wang
,
W.-S.
Chang
, and
S.
Link
,
Chem. Soc. Rev.
44
,
40
(
2015
).
4.
L.
Guo
,
J. A.
Jackman
,
H.-H.
Yang
,
P.
Chen
,
N.-J.
Cho
, and
D.-H.
Kim
,
Nano Today
10
,
213
(
2015
).
5.
A. N.
Koya
and
J.
Lin
,
Appl. Phys. Rev.
4
,
021104
(
2017
).
6.
N.
Elahi
,
M.
Kamali
, and
M. H.
Baghersad
,
Talanta
184
,
537
(
2018
).
7.
Z.
Farka
,
T.
Juřík
,
D.
Kovář
,
L.
Trnková
, and
P.
Skládal
,
Chem. Rev.
117
,
9973
(
2017
).
8.
K. A.
Willets
,
A. J.
Wilson
,
V.
Sundaresan
, and
P. B.
Joshi
,
Chem. Rev.
117
,
7538
(
2017
).
9.
C.
Deeb
and
J.-L.
Pelouard
,
Phys. Chem. Chem. Phys.
19
,
29731
(
2017
).
10.
S.
Linic
,
U.
Aslam
,
C.
Boerigter
, and
M.
Morabito
,
Nat. Mater.
14
,
567
(
2015
).
11.
M.
Valenti
,
M. P.
Jonsson
,
G.
Biskos
,
A.
Schmidt-Ott
, and
W. A.
Smith
,
J. Mater. Chem. A
4
,
17891
(
2016
).
12.
A. E.
Ershov
,
V. S.
Gerasimov
,
A. P.
Gavrilyuk
,
S. V.
Karpov
,
V. I.
Zakomirnyi
,
I. L.
Rasskazov
, and
S. P.
Polyutov
,
J. Quant. Spectrosc. Radiat. Transfer
191
,
1
6
(
2017
).
13.
I. L.
Rasskazov
,
S. V.
Karpov
, and
V. A.
Markel
,
Opt. Lett.
38
(
22
),
4743
4746
(
2013
).
14.
I. L.
Rasskazov
,
S. V.
Karpov
,
G. Y.
Panasyuk
, and
V. A.
Markel
,
J. Appl. Phys.
119
(
4
),
043101
(
2016
).
15.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
V. S.
Gerasimov
,
A. E.
Ershov
,
S. P.
Polyutov
,
S. V.
Karpov
, and
H.
Ågren
,
Photonics Nanostruct. - Fundam. Appl.
30
,
50
56
(
2018
).
16.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
S. V.
Karpov
, and
S. P.
Polyutov
,
J. Quant. Spectrosc. Radiat. Transfer
187
,
54
61
(
2017
).
17.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
V. S.
Gerasimov
,
A. E.
Ershov
,
S. P.
Polyutov
, and
S. V.
Karpov
,
Appl. Phys. Lett.
111
(
12
),
123107
(
2017
).
18.
N.
Venugopal
,
A. E.
Gerasimov
,
V. S.
Ershov
,
S. V.
Karpov
, and
S. P.
Polyutov
,
Opt. Mater.
72
,
397
402
(
2017
).
19.
F.
Parveen
,
B.
Sannakki
,
M. V.
Mandke
, and
H. M.
Pathan
,
Sol. Energy Mater. Sol. Cells
144
,
371
(
2016
).
20.
S.
Gwo
,
H.-Y.
Chen
,
M.-H.
Lin
,
L.
Sun
, and
X.
Li
,
Chem. Soc. Rev.
45
,
5672
(
2016
).
21.
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
X.
Shi
, and
H.
Misawa
,
Chem. Rev.
118
,
2955
(
2018
).
22.
M.
Ujihara
,
J. Oleo Sci.
67
,
689
(
2018
).
23.
S.
Lee
and
I.
Choi
,
Biochip J.
13
,
30
(
2019
).
24.
A.
Crut
,
P.
Maioli
,
F.
Vallée
, and
N. D.
Fatti
,
J. Phys.: Condens. Matter
29
,
123002
(
2017
).
25.
R.
Esteban
,
A. G.
Borisov
,
P.
Nordlander
, and
J.
Aizpurua
,
Nat. Commun.
3
,
825
(
2012
).
26.
R.
Esteban
,
A.
Zugarramurdi
,
P.
Zhang
,
P.
Nordlander
,
F. J.
Garcia-Vidal
,
A. G.
Borisov
, and
J.
Aizpurua
,
Faraday Discuss.
178
,
151
(
2015
).
27.
W.
Zhu
,
R.
Esteban
,
A. G.
Borisov
,
J. J.
Baumberg
,
P.
Nordlander
,
H. J.
Lezec
,
J.
Aizpurua
, and
K. B.
Crozier
,
Nat. Commun.
7
,
11495
(
2016
).
28.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
29.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
30.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
31.
X. L.
Lozano
,
C.
Mottet
, and
H.-Ch.
Weissker
,
J. Phys. Chem. C
117
,
3062
(
2013
).
32.
V.
Kulkarni
,
E.
Prodan
, and
P.
Nordlander
,
Nano Lett.
13
,
5873
(
2013
).
33.
E.
Townsend
and
G. W.
Bryant
,
Nano Lett.
12
,
429
(
2012
).
34.
X.
López-Lozano
,
H.
Barron
,
C.
Mottet
, and
H.-C.
Weissker
,
Phys. Chem. Chem. Phys.
16
,
1820
(
2014
).
35.
V.
Kulkarni
and
A.
Manjavacas
,
ACS Photonics
2
,
987
(
2015
).
36.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
New York
,
1960
).
37.
A.
Varas
,
P.
García-González
,
J.
Feist
,
F. J.
García-Vidal
, and
A.
Rubio
,
J. Nanophotonics
5
,
409
(
2016
).
38.
G.
Kresse
and
J.
Furthmöller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
39.
G.
Kresse
and
J.
Furthmöller
,
Phys. Rev. B
54
,
11169
(
1996
).
40.
M.
Sukharev
and
M.
Galperin
,
Phys. Rev. B
81
,
165307
(
2010
).
41.
R.
Landauer
,
Philos. Mag.
21
,
863
(
1970
).
42.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
New York
,
2005
).
43.
L. V.
Keldysh
, “
Diagram technique for nonequilibrium processes
,”
JETP
20
(
4
),
1018
(
1965
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/20/4/p1018?a=list.
44.
L. P.
Kadanoff
and
G.
Baym
,
Quantum Statistical Mechanics
, Frontiers in Physics Lecture Notes (
Benjamin; Cummings
,
1962
).
45.
G.
Stefanuci
and
R.
van Leewuen
,
Non-Equilibrium Many-Body Theory of Quantum Systems
(
Cambridge University Press
,
Cambridge
,
2013
).
46.
See www.openmx-square.org for nano-scale material simulations.
47.
U.
Peskin
,
Fortschr. Phys.
65
,
1600048
(
2017
).
48.
A. J.
White
,
M.
Sukharev
, and
M.
Galperin
,
Phys. Rev. B
86
,
205324
(
2012
).
49.
M.
Kuperman
and
U.
Peskin
,
Molecular Electronics: A Theoretical and Experimental Approach
(
Taylor & Francis
,
2015
).
50.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
,
5678
(
2007
).
51.
A.
Fihey
,
C.
Hettich
,
J.
Touzeau
,
F.
Maurel
,
A.
Perrier
,
C.
Köhler
,
B.
Aradi
, and
T.
Frauenheim
,
J. Comput. Chem.
36
,
2075
(
2015
).
52.
F.
Alkan
and
C. M.
Aikens
,
J. Phys. Chem. C
122
,
23639
(
2018
).
53.
N. V.
Ilawe
,
M. B.
Oviedo
, and
B. M.
Wong
,
J. Mater. Chem. C
6
,
5857
(
2018
).
54.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
55.
W. R.
Smythe
,
Static and Dynamic Electricity
(
McGraw-Hill Book Company, Inc.
,
1950
).
56.
V. A.
Saranin
,
Phys. - Usp.
42
,
385
(
1999
).
You do not currently have access to this content.