We present a general variational approach for computing the laser-induced rovibrational dynamics of molecules, taking into account the hyperfine effects of the nuclear quadrupole coupling. The method combines the general variational approach TROVE (Theoretical Ro-Vibrational Energies), which provides accurate rovibrational hyperfine energies and wavefunctions for arbitrary molecules, with the variational method RichMol, designed for generalized simulations of the rovibrational dynamics in the presence of external electric fields. We investigate the effect of the nuclear quadrupole coupling on the short-pulse laser alignment of a prototypical molecule CFClBrI, which contains nuclei with large quadrupole constants. The influence of the nuclear quadrupole interactions on the postpulse molecular dynamics is negligible at early times, for the first several revivals; however, at longer time scales, the effect is entirely detrimental and strongly depends on the laser intensity. This effect can be explained by dephasing in the laser-excited rotational wavepacket due to irregular spacings between the hyperfine-split nuclear spin states across different rotational hyperfine bands.

1.
L.
Christensen
,
J. H.
Nielsen
,
C. B.
Brandt
,
C. B.
Madsen
,
L. B.
Madsen
,
C. S.
Slater
,
A.
Lauer
,
M.
Brouard
,
M. P.
Johansson
,
B.
Shepperson
, and
H.
Stapelfeldt
, “
Dynamic Stark control of torsional motion by a pair of laser pulses
,”
Phys. Rev. Lett.
113
,
073005
(
2014
).
2.
B.
Shepperson
,
A. A.
Søndergaard
,
L.
Christiansen
,
J.
Kaczmarczyk
,
R. E.
Zillich
,
M.
Lemeshko
, and
H.
Stapelfeldt
, “
Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking free
,”
Phys. Rev. Lett.
118
,
203203
(
2017
); e-print arXiv:1702.01977 [physics].
3.
E. T.
Karamatskos
,
S.
Raabe
,
T.
Mullins
,
A.
Trabattoni
,
P.
Stammer
,
G.
Goldsztejn
,
R. R.
Johansen
,
K.
Długołęcki
,
H.
Stapelfeldt
,
M. J. J.
Vrakking
,
S.
Trippel
,
A.
Rouzée
, and
J.
Küpper
, “
Molecular movie of ultrafast coherent rotational dynamics of OCS
,”
Nat. Commun.
10
,
3364
(
2019
); e-print arXiv:1807.01034 [physics].
4.
C. P.
Koch
,
M.
Lemeshko
, and
D.
Sugny
, “
Quantum control of molecular rotation
,”
Rev. Mod. Phys.
91
,
035005
(
2019
).
5.
H.
Stapelfeldt
and
T.
Seideman
, “
Colloquium: Aligning molecules with strong laser pulses
,”
Rev. Mod. Phys.
75
,
543
557
(
2003
).
6.
L.
Holmegaard
,
J. H.
Nielsen
,
I.
Nevo
,
H.
Stapelfeldt
,
F.
Filsinger
,
J.
Küpper
, and
G.
Meijer
, “
Laser-induced alignment and orientation of quantum-state-selected large molecules
,”
Phys. Rev. Lett.
102
,
023001
(
2009
); e-print arXiv:0810.2307 [physics].
7.
O.
Ghafur
,
A.
Rouzée
,
A.
Gijsbertsen
,
W. K.
Siu
,
S.
Stolte
, and
M. J. J.
Vrakking
, “
Impulsive orientation and alignment of quantum-state-selected NO molecules
,”
Nat. Phys.
5
,
289
293
(
2009
).
8.
C. J.
Hensley
,
J.
Yang
, and
M.
Centurion
, “
Imaging of isolated molecules with ultrafast electron pulses
,”
Phys. Rev. Lett.
109
,
133202
(
2012
).
9.
J.
Küpper
,
S.
Stern
,
L.
Holmegaard
,
F.
Filsinger
,
A.
Rouzée
,
A.
Rudenko
,
P.
Johnsson
,
A. V.
Martin
,
M.
Adolph
,
A.
Aquila
,
S.
Bajt
,
A.
Barty
,
C.
Bostedt
,
J.
Bozek
,
C.
Caleman
,
R.
Coffee
,
N.
Coppola
,
T.
Delmas
,
S.
Epp
,
B.
Erk
,
L.
Foucar
,
T.
Gorkhover
,
L.
Gumprecht
,
A.
Hartmann
,
R.
Hartmann
,
G.
Hauser
,
P.
Holl
,
A.
Hömke
,
N.
Kimmel
,
F.
Krasniqi
,
K.-U.
Kühnel
,
J.
Maurer
,
M.
Messerschmidt
,
R.
Moshammer
,
C.
Reich
,
B.
Rudek
,
R.
Santra
,
I.
Schlichting
,
C.
Schmidt
,
S.
Schorb
,
J.
Schulz
,
H.
Soltau
,
J. C. H.
Spence
,
D.
Starodub
,
L.
Strüder
,
J.
Thøgersen
,
M. J. J.
Vrakking
,
G.
Weidenspointner
,
T. A.
White
,
C.
Wunderer
,
G.
Meijer
,
J.
Ullrich
,
H.
Stapelfeldt
,
D.
Rolles
, and
H. N.
Chapman
, “
X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser
,”
Phys. Rev. Lett.
112
,
083002
(
2014
); e-print arXiv:1307.4577 [physics].
10.
J.
Itatani
,
J.
Levesque
,
D.
Zeidler
,
H.
Niikura
,
H.
Pépin
,
J. C.
Kieffer
,
P. B.
Corkum
, and
D. M.
Villeneuve
, “
Tomographic imaging of molecular orbitals
,”
Nature
432
,
867
871
(
2004
).
11.
T.
Kanai
,
S.
Minemoto
, and
H.
Sakai
, “
Quantum interference during high-order harmonic generation from aligned molecules
,”
Nature
435
,
470
474
(
2005
).
12.
L.
Holmegaard
,
J. L.
Hansen
,
L.
Kalhøj
,
S. L.
Kragh
,
H.
Stapelfeldt
,
F.
Filsinger
,
J.
Küpper
,
G.
Meijer
,
D.
Dimitrovski
,
M.
Abu-samha
,
C. P. J.
Martiny
, and
L. B.
Madsen
, “
Photoelectron angular distributions from strong-field ionization of oriented molecules
,”
Nat. Phys.
6
,
428
(
2010
); e-print arXiv:1003.4634 [physics].
13.
F.
Filsinger
,
G.
Meijer
,
H.
Stapelfeldt
,
H.
Chapman
, and
J.
Küpper
, “
State- and conformer-selected beams of aligned and oriented molecules for ultrafast diffraction studies
,”
Phys. Chem. Chem. Phys.
13
,
2076
2087
(
2011
); e-print arXiv:1009.0871 [physics].
14.
S. J.
Weber
,
M.
Oppermann
, and
J. P.
Marangos
, “
Role of rotational wave packets in strong field experiments
,”
Phys. Rev. Lett.
111
,
263601
(
2013
).
15.
E. W.
Kuipers
,
M. G.
Tenner
,
A.
Kleyn
, and
S.
Stolte
, “
Observation of steric effects in gas-surface scattering
,”
Nature
334
,
420
422
(
1988
).
16.
T. P.
Rakitzis
,
A. J.
van den Brom
, and
M. H. M.
Janssen
, “
Directional dynamics in the photodissociation of oriented molecules
,”
Science
303
,
1852
1854
(
2004
).
17.
V.
Aquilanti
,
M.
Bartolomei
,
F.
Pirani
,
D.
Cappelletti
,
F.
Vecchiocattivi
,
Y.
Shimizu
, and
T.
Kasai
, “
Orienting and aligning molecules for stereochemistry and photodynamics
,”
Phys. Chem. Chem. Phys.
7
,
291
300
(
2005
).
18.
P. M.
Felker
,
J. S.
Baskin
, and
A. H.
Zewail
, “
Rephasing of collisionless molecular rotational coherence in large molecules
,”
J. Phys. Chem.
90
,
724
728
(
1986
).
19.
F.
Rosca-Pruna
and
M. J. J.
Vrakking
, “
Experimental observation of revival structures in picosecond laser-induced alignment of I2
,”
Phys. Rev. Lett.
87
,
153902
(
2001
).
20.
M.
Spanner
,
S.
Patchkovskii
,
E.
Frumker
, and
P.
Corkum
, “
Mechanisms of two-color laser-induced field-free molecular orientation
,”
Phys. Rev. Lett.
109
,
113001
(
2012
); e-print arXiv:1205.4383 [physics].
21.
K.
Lin
,
I.
Tutunnikov
,
J.
Qiang
,
J.
Ma
,
Q.
Song
,
Q.
Ji
,
W.
Zhang
,
H.
Li
,
F.
Sun
,
X.
Gong
,
H.
Li
,
P.
Lu
,
H.
Zeng
,
Y.
Prior
,
I. S.
Averbukh
, and
J.
Wu
, “
All-optical field-free three-dimensional orientation of asymmetric-top molecules
,”
Nat. Commun.
9
,
5134
(
2018
); e-print arXiv:1803.07823 [physics].
22.
J. H.
Nielsen
,
H.
Stapelfeldt
,
J.
Küpper
,
B.
Friedrich
,
J. J.
Omiste
, and
R.
González-Férez
, “
Making the best of mixed-field orientation of polar molecules: A recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses
,”
Phys. Rev. Lett.
108
,
193001
(
2012
); e-print arXiv:1204.2685 [physics].
23.
S.
Trippel
,
T.
Mullins
,
N. L. M.
Müller
,
J. S.
Kienitz
,
R.
González-Férez
, and
J.
Küpper
, “
Two-state wave packet for strong field-free molecular orientation
,”
Phys. Rev. Lett.
114
,
103003
(
2015
); e-print arXiv:1409.2836 [physics].
24.
T.
Seideman
, “
Revival structure of aligned rotational wave packets
,”
Phys. Rev. Lett.
83
,
4971
4974
(
1999
).
25.
F.
Rosca-Pruna
and
M. J. J.
Vrakking
, “
Revival structures in picosecond laser-induced alignment of I2 molecules. II. Numerical modeling
,”
J. Chem. Phys.
116
,
6579
(
2002
).
26.
T.
Seideman
and
E.
Hamilton
, “
Nonadiabatic alignment by intense pulses. Concepts, theory, and directions
,”
Adv. At., Mol., Opt. Phys.
52
,
289
329
(
2005
).
27.
L. V.
Thesing
,
J.
Küpper
, and
R.
González-Férez
, “
Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry
,”
J. Chem. Phys.
146
,
244304
(
2017
); e-print arXiv:1705.03225 [physics].
28.
L. V.
Thesing
,
A.
Yachmenev
,
R.
González-Férez
, and
J.
Küpper
, “
Laser-induced alignment of weakly bound molecular aggregates
,”
Phys. Rev. A
98
,
053412
(
2018
); e-print arXiv:1808.01206 [physics].
29.
E. F.
Thomas
,
A. A.
Søndergaard
,
B.
Shepperson
,
N. E.
Henriksen
, and
H.
Stapelfeldt
, “
Hyperfine-structure-induced depolarization of impulsively aligned I2 molecules
,”
Phys. Rev. Lett.
120
,
163202
(
2018
); e-print arXiv:1804.04416 [physics].
30.
B.
Erk
,
R.
Boll
,
S.
Trippel
,
D.
Anielski
,
L.
Foucar
,
B.
Rudek
,
S. W.
Epp
,
R.
Coffee
,
S.
Carron
,
S.
Schorb
,
K. R.
Ferguson
,
M.
Swiggers
,
J. D.
Bozek
,
M.
Simon
,
T.
Marchenko
,
J.
Küpper
,
I.
Schlichting
,
J.
Ullrich
,
C.
Bostedt
,
D.
Rolles
, and
A.
Rudenko
, “
Imaging charge transfer in iodomethane upon x-ray photoabsorption
,”
Science
345
,
288
291
(
2014
).
31.
K.
Nass
,
L.
Foucar
,
T. R. M.
Barends
,
E.
Hartmann
,
S.
Botha
,
R. L.
Shoeman
,
R. B.
Doak
,
R.
Alonso-Mori
,
A.
Aquila
,
S.
Bajt
,
A.
Barty
,
R.
Bean
,
K. R.
Beyerlein
,
M.
Bublitz
,
N.
Drachmann
,
J.
Gregersen
,
H. O.
Jönsson
,
W.
Kabsch
,
S.
Kassemeyer
,
J. E.
Koglin
,
M.
Krumrey
,
D.
Mattle
,
M.
Messerschmidt
,
P.
Nissen
,
L.
Reinhard
,
O.
Sitsel
,
D.
Sokaras
,
G. J.
Williams
,
S.
Hau-Riege
,
N.
Timneanu
,
C.
Caleman
,
H. N.
Chapman
,
S.
Boutet
, and
I.
Schlichting
, “
Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
,”
J. Synchrotron Radiat.
22
,
225
238
(
2015
).
32.
I.
Nevo
,
L.
Holmegaard
,
J. H.
Nielsen
,
J. L.
Hansen
,
H.
Stapelfeldt
,
F.
Filsinger
,
G.
Meijer
, and
J.
Küpper
, “
Laser-induced 3D alignment and orientation of quantum state-selected molecules
,”
Phys. Chem. Chem. Phys.
11
,
9912
9918
(
2009
); e-print arXiv:0906.2971 [physics].
33.
T.
Takanashi
,
K.
Nakamura
,
E.
Kukk
,
K.
Motomura
,
H.
Fukuzawa
,
K.
Nagaya
,
S.
ichi Wada
,
Y.
Kumagai
,
D.
Iablonskyi
,
Y.
Ito
,
Y.
Sakakibara
,
D.
You
,
T.
Nishiyama
,
K.
Asa
,
Y.
Sato
,
T.
Umemoto
,
K.
Kariyazono
,
K.
Ochiai
,
M.
Kanno
,
K.
Yamazaki
,
K.
Kooser
,
C.
Nicolas
,
C.
Miron
,
T.
Asavei
,
L.
Neagu
,
M.
Schöffler
,
G.
Kastirke
,
X.-J.
Liu
,
A.
Rudenko
,
S.
Owada
,
T.
Katayama
,
T.
Togashi
,
K.
Tono
,
M.
Yabashi
,
H.
Kono
, and
K.
Ueda
, “
Ultrafast Coulomb explosion of a diiodomethane molecule induced by an x-ray free-electron laser pulse
,”
Phys. Chem. Chem. Phys.
19
,
19707
19721
(
2017
).
34.
A.
Yachmenev
and
J.
Küpper
, “
Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules
,”
J. Chem. Phys.
147
,
141101
(
2017
); e-print arXiv:1709.08558 [physics].
35.
A.
Owens
and
A.
Yachmenev
, “
RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields
,”
J. Chem. Phys.
148
,
124102
(
2018
); e-print arXiv:1802.07603 [physics].
36.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
, “
Theoretical ROVibrational energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules
,”
J. Mol. Spectrosc.
245
,
126
140
(
2007
).
37.
A.
Yachmenev
and
S. N.
Yurchenko
, “
Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame
,”
J. Chem. Phys.
143
,
014105
(
2015
).
38.
S. N.
Yurchenko
,
A.
Yachmenev
, and
R. I.
Ovsyannikov
, “
Symmetry adapted ro-vibrational basis functions for variational nuclear motion calculations: TROVE approach
,”
J. Chem. Theory Comput.
13
,
4368
(
2017
); e-print arXiv:1708.07185 [physics].
39.
K. L.
Chubb
,
A.
Yachmenev
,
J.
Tennyson
, and
S. N.
Yurchenko
, “
Treating linear molecule HCCH in calculations of rotation-vibration spectra
,”
J. Chem. Phys.
149
,
014101
(
2018
).
40.
P.
Coles
,
A.
Owens
,
J.
Küpper
, and
A.
Yachmenev
, “
Hyperfine-resolved rotation-vibration line list of ammonia (NH3)
,”
Astrophys. J.
870
,
24
(
2018
); e-print arXiv:1809.06915 [physics].
41.
E.
Hamilton
,
T.
Seideman
,
T.
Ejdrup
,
M. D.
Poulsen
,
C. Z.
Bisgaard
,
S. S.
Viftrup
, and
H.
Stapelfeldt
, “
Alignment of symmetric top molecules by short laser pulses
,”
Phys. Rev. A
72
,
043402
(
2005
).
42.
A.
Rouzee
,
S.
Guerin
,
V.
Boudon
,
B.
Lavorel
, and
O.
Faucher
, “
Field-free one-dimensional alignment of ethylene molecule
,”
Phys. Rev. A
73
,
033418
033419
(
2006
).
43.
A.
Rouzee
,
S.
Guerin
,
O.
Faucher
, and
B.
Lavorel
, “
Field-free molecular alignment of asymmetric top molecules using elliptically polarized laser pulses
,”
Phys. Rev. A
77
,
043412
(
2008
).
44.
S.
Trippel
,
T.
Mullins
,
N. L. M.
Müller
,
J. S.
Kienitz
,
J. J.
Omiste
,
H.
Stapelfeldt
,
R.
González-Férez
, and
J.
Küpper
, “
Strongly driven quantum pendulum of the carbonyl sulfide molecule
,”
Phys. Rev. A
89
,
051401(R)
(
2014
); e-print arXiv:1401.6897 [quant-ph].
45.
M.
Torrent-Sucarrat
,
J. M.
Luis
, and
B.
Kirtman
, “
Variational calculation of vibrational linear and nonlinear optical properties
,”
J. Chem. Phys.
122
,
204108
(
2005
).
46.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr
,”
J. Chem. Phys.
119
,
12753
12762
(
2003
).
47.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
48.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
, “
Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements
,”
J. Chem. Phys.
119
,
11113
11123
(
2003
).
49.
D.
Hait
and
M.
Head-Gordon
, “
How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry
,”
Phys. Chem. Chem. Phys.
20
,
19800
19810
(
2018
).
50.
F.
Neese
,
A.
Wolf
,
T.
Fleig
,
M.
Reiher
, and
B. A.
Hess
, “
Calculation of electric-field gradients based on higher-order generalized Douglas–Kroll transformations
,”
J. Chem. Phys.
122
,
204107
(
2005
).
51.
F. E.
Jorge
,
A. C.
Neto
,
G. G.
Camiletti
, and
S. F.
Machado
, “
Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties
,”
J. Chem. Phys.
130
,
064108
(
2009
).
52.
C.
Campos
and
F.
Jorge
, “
Triple zeta quality basis sets for atoms Rb through Xe: Application in CCSD(T) atomic and molecular property calculations
,”
Mol. Phys.
111
,
167
173
(
2012
).
53.
R.
Bjornsson
and
M.
Bühl
, “
Electric field gradients of transition metal complexes: Basis set uncontraction and scalar relativistic effects
,”
Chem. Phys. Lett.
559
,
112
116
(
2013
).
54.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2011
).
55.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2017
).
56.
P.
Pyykkö
, “
Year-2008 nuclear quadrupole moments
,”
Mol. Phys.
106
,
1965
1974
(
2008
).
57.
F.
Filsinger
,
J.
Küpper
,
G.
Meijer
,
L.
Holmegaard
,
J. H.
Nielsen
,
I.
Nevo
,
J. L.
Hansen
, and
H.
Stapelfeldt
, “
Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields
,”
J. Chem. Phys.
131
,
064309
(
2009
); e-print arXiv:0903.5413 [physics].
58.
Y.-P.
Chang
,
D. A.
Horke
,
S.
Trippel
, and
J.
Küpper
, “
Spatially-controlled complex molecules and their applications
,”
Int. Rev. Phys. Chem.
34
,
557
590
(
2015
); e-print arXiv:1505.05632 [physics].
59.
S.
Trippel
,
M.
Johny
,
T.
Kierspel
,
J.
Onvlee
,
H.
Bieker
,
H.
Ye
,
T.
Mullins
,
L.
Gumprecht
,
K.
Długołęcki
, and
J.
Küpper
, “
Knife edge skimming for improved separation of molecular species by the deflector
,”
Rev. Sci. Instrum.
89
,
096110
(
2018
); e-print arXiv:1802.04053 [physics].
60.
M. D.
Poulsen
,
E.
Peronne
,
H.
Stapelfeldt
,
C. Z.
Bisgaard
,
S.
Viftrup
,
E.
Hamilton
, and
T.
Seideman
, “
Nonadiabatic alignment of asymmetric top molecules: Rotational revivals
,”
J. Chem. Phys.
121
,
783
791
(
2004
).
61.
L.
Holmegaard
,
S. S.
Viftrup
,
V.
Kumarappan
,
C. Z.
Bisgaard
,
H.
Stapelfeldt
,
E.
Hamilton
, and
T.
Seideman
, “
Control of rotational wave-packet dynamics in asymmetric top molecules
,”
Phys. Rev. A
75
,
051403
(
2007
).
62.
A.
Chatterley
,
E. T.
Karamatskos
,
C.
Schouder
,
L.
Christiansen
,
A. V.
Jörgensen
,
T.
Mullins
,
J.
Küpper
, and
H.
Stapelfeldt
, “
Switched wave packets with spectrally truncated chirped pulses
,”
J. Chem. Phys.
148
,
221105
(
2018
); e-print arXiv:1803.03953 [physics].
63.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
, 3rd ed. (
John Wiley & Sons
,
New York, NY, USA
,
1984
).
You do not currently have access to this content.