We benchmark a selection of semiclassical and perturbative dynamics techniques by investigating the correlated evolution of a cavity-bound atomic system to assess their applicability to study problems involving strong light-matter interactions in quantum cavities. The model system of interest features spontaneous emission, interference, and strong coupling behavior and necessitates the consideration of vacuum fluctuations and correlated light-matter dynamics. We compare a selection of approximate dynamics approaches including fewest switches surface hopping (FSSH), multitrajectory Ehrenfest dynamics, linearized semiclassical dynamics, and partially linearized semiclassical dynamics. Furthermore, investigating self-consistent perturbative methods, we apply the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the second Born approximation. With the exception of fewest switches surface hopping, all methods provide a reasonable level of accuracy for the correlated light-matter dynamics, with most methods lacking the capacity to fully capture interference effects.

1.
E.
Orgiu
,
J.
George
,
J. A.
Hutchison
,
E.
Devaux
,
J. F.
Dayen
,
B.
Doudin
,
F.
Stellacci
,
C.
Genet
,
J.
Schachenmayer
,
C.
Genes
,
G.
Pupillo
,
P.
Samori
, and
T. W.
Ebbesen
, “
Conductivity in organic semiconductors hybridized with the vacuum field
,”
Nat. Mater.
14
(
11
),
1123
1129
(
2015
).
2.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
(
7610
),
127
130
(
2016
).
3.
S. R.
Casey
and
J. R.
Sparks
, “
Vibrational strong coupling of organometallic complexes
,”
J. Phys. Chem. C
120
(
49
),
28138
28143
(
2016
).
4.
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
H.
Hiura
,
C.
Genet
, and
T. W.
Ebbesen
, “
Multiple Rabi splittings under ultrastrong vibrational coupling
,”
Phys. Rev. Lett.
117
,
153601
(
2016
).
5.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
, “
Polaritonic chemistry with organic molecules
,”
ACS Photonics
5
(
1
),
205
216
(
2018
).
6.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
7.
J.
Flick
,
N.
Rivera
, and
P.
Narang
, “
Strong light-matter coupling in quantum chemistry and quantum photonics
,”
Nanophotonics
7
(
9
),
1479
1501
(
2018
).
8.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of non-Markovian dynamics in organic polaritons
,”
Phys. Rev. Lett.
121
,
227401
(
2018
).
9.
M.
Reitz
,
C.
Sommer
, and
C.
Genes
, “
Langevin approach to quantum optics with molecules
,”
Phys. Rev. Lett.
122
,
203602
(
2019
).
10.
L. A.
Martínez-Martínez
,
E.
Eizner
,
S.
Kena-Cohen
, and
J.
Yuen-Zhou
, “
Triplet harvesting in the polaritonic regime: A variational polaron approach
,”
J. Chem. Phys.
151
(
5
),
054106
(
2019
).
11.
J.
Feist
and
F. J.
Garcia-Vidal
, “
Extraordinary exciton conductance induced by strong coupling
,”
Phys. Rev. Lett.
114
,
196402
(
2015
).
12.
J.
Schachenmayer
,
C.
Genes
,
E.
Tignone
, and
P.
Guido
, “
Cavity-enhanced transport of excitons
,”
Phys. Rev. Lett.
114
,
196403
(
2015
).
13.
M.
Cirio
,
S.
De Liberato
,
N.
Lambert
, and
F.
Nori
, “
Ground state electroluminescence
,”
Phys. Rev. Lett.
116
,
113601
(
2016
).
14.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
12
),
3026
3034
(
2017
).
15.
M.
Ruggenthaler
,
N.
Tancogne-Dejean
,
J.
Flick
,
H.
Appel
, and
A.
Rubio
, “
From a quantum-electrodynamical light–matter description to novel spectroscopies
,”
Nat. Rev. Chem.
2
(
3
),
0118
(
2018
).
16.
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
11
),
4883
4892
(
2019
).
17.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
55
(
38
),
11462
11466
(
2016
).
18.
H.
Hiura
,
A.
Shalabney
, and
J.
George
, “
Cavity Catalysis–Accelerating Reactions under Vibrational Strong Coupling
,” Angewandte Chemie International Edition (
Wiley online
,
2019
).
19.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
 et al., “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
(
6427
),
615
619
(
2019
).
20.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity-induced modifications of molecular structure in the strong-coupling regime
,”
Phys. Rev. X
5
,
041022
(
2015
).
21.
J.
Flick
,
H.
Appel
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems
,”
J. Chem. Theory Comput.
13
(
4
),
1616
1625
(
2017
).
22.
H.
Ling Luk
,
J.
Feist
,
J. J.
Toppari
, and
G.
Groenhof
, “
Multiscale molecular dynamics simulations of polaritonic chemistry
,”
J. Chem. Theory Comput.
13
(
9
),
4324
4335
(
2017
).
23.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling
,”
Phys. Rev. A
98
(
4
),
043801
(
2018
).
24.
M.
Ruggenthaler
,
J.
Flick
,
C.
Pellegrini
,
H.
Appel
,
I. V.
Tokatly
, and
A.
Rubio
, “
Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory
,”
Phys. Rev. A
90
,
012508
(
2014
).
25.
C.
Pellegrini
,
J.
Flick
,
I. V.
Tokatly
,
H.
Appel
, and
A.
Rubio
, “
Optimized effective potential for quantum electrodynamical time-dependent density functional theory
,”
Phys. Rev. Lett.
115
,
093001
(
2015
).
26.
J.
Flick
,
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Ab-initio optimized effective potentials for real molecules in optical cavities: Photon contributions to the molecular ground state
,”
ACS Photonics
5
,
992
(
2018
).
27.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
(
13
),
2942
2955
(
2001
).
28.
A.
Kelly
,
A. M.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
, “
Generalized quantum master equations in and out of equilibrium: When can one win?
,”
J. Chem. Phys.
144
,
184105
(
2016
).
29.
N. M.
Hoffmann
,
C.
Schäfer
,
A.
Rubio
,
A.
Kelly
, and
H.
Appel
, “
Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multi-trajectory Ehrenfest dynamics
,”
Phys. Rev. A
99
(
6
),
063819
(
2019
).
30.
H.-T.
Chen
,
T. E.
Li
,
M.
Sukharev
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Ehrenfest+R dynamics. II. A semiclassical QED framework for Raman scattering
,”
J. Chem. Phys.
150
(
4
),
044103
(
2019
).
31.
H.-T.
Chen
,
T. E.
Li
,
M.
Sukharev
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Ehrenfest+R dynamics. I. A mixed quantum-classical electrodynamics simulation of spontaneous emission
,”
J. Chem. Phys.
150
(
4
),
044102
(
2019
).
32.
T. E.
Li
,
A.
Nitzan
,
M.
Sukharev
,
T.
Martinez
,
H.-T.
Chen
, and
J. E.
Subotnik
, “
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
,”
Phys. Rev. A
97
,
032105
(
2018
).
33.
P.
Ehrenfest
,
Z. Phys. A
45
(
7-8
),
455
(
1927
).
34.
35.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
(
2
),
1061
1071
(
1990
).
36.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
, “
Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems
,”
J. Chem. Phys.
108
(
23
),
9726
9736
(
1998
).
37.
C.-Y.
Hsieh
and
R.
Kapral
, “
Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution
,”
J. Chem. Phys.
137
(
22
),
22A507
(
2012
).
38.
C.-Y.
Hsieh
and
R.
Kapral
, “
Analysis of the forward-backward trajectory solution for the mixed quantum-classical Liouville equation
,”
J. Chem. Phys.
138
(
13
),
134110
(
2013
).
39.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
(
Dover Publications
,
1998
).
40.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
R.
Angel
, “
Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15285
(
2015
).
41.
I. V.
Tokatly
, “
Time-dependent density functional theory for many-electron systems interacting with cavity photons
,”
Phys. Rev. Lett.
110
,
233001
(
2013
).
42.
V.
Bužek
,
G.
Drobný
,
M. G.
Kim
,
M.
Havukainen
, and
P. L.
Knight
, “
Numerical simulations of atomic decay in cavities and material media
,”
Phys. Rev. A
60
,
582
592
(
1999
).
43.
D.
De Bernardis
,
P.
Pilar
,
T.
Jaako
,
S.
De Liberato
, and
P.
Rabl
, “
Breakdown of gauge invariance in ultrastrong-coupling cavity QED
,”
Phys. Rev. A
98
(
5
),
053819
(
2018
).
44.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
, “
Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
” e-print arXiv:1911.08427 (
2019
).
45.
Q.
Su
and
J. H.
Eberly
, “
Model atom for multiphoton physics
,”
Phys. Rev. A
44
,
5997
6008
(
1991
).
46.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
47.
R.
Grunwald
,
A.
Kelly
, and
R.
Kapral
,
Quantum Dynamics in Almost Classical Environments
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2009
), pp.
383
413
.
48.
J. C.
Tully
and
R. K.
Preston
, “
Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2
,”
J. Chem. Phys.
55
(
2
),
562
572
(
1971
).
49.
J. E.
Subotnik
and
N.
Shenvi
, “
A new approach to decoherence and momentum rescaling in the surface hopping algorithm
,”
J. Chem. Phys.
134
(
2
),
024105
(
2011
).
50.
E. R.
Bittner
and
P. J.
Rossky
, “
Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes
,”
J. Chem. Phys.
103
(
18
),
8130
8143
(
1995
).
51.
O. V.
Prezhdo
and
P. J.
Rossky
, “
Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations
,”
J. Chem. Phys.
107
(
15
),
5863
5878
(
1997
).
52.
H.-D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
(
7
),
3214
3223
(
1979
).
53.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
(
4
),
578
581
(
1997
).
54.
G.
Stock
and
M.
Thoss
, “
Classical description of nonadiabatic quantum dynamics
,”
Adv. Chem. Phys.
131
,
243
376
(
2005
).
55.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical Liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
(
8
),
084102
(
2008
).
56.
A.
Nassimi
,
S.
Bonella
, and
R.
Kapral
, “
Analysis of the quantum-classical Liouville equation in the mapping basis
,”
J. Chem. Phys.
133
(
13
),
134115
(
2010
).
57.
P.
Huo
and
D. F.
Coker
, “
Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution
,”
J. Chem. Phys.
135
(
20
),
201101
(
2011
).
58.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
, “
Mapping quantum-classical Liouville equation: Projectors and trajectories
,”
J. Chem. Phys.
136
(
8
),
084101
(
2012
).
59.
W.
Shun-jin
and
W.
Cassing
, “
Explicit treatment of N-body correlations within a density-matrix formalism
,”
Ann. Phys.
159
(
2
),
328
350
(
1985
).
60.
J.
Fricke
, “
Transport equations including many-particle correlations for an arbitrary quantum system: A general formalism
,”
Ann. Phys.
252
(
2
),
479
498
(
1996
).
61.
M.
Bonitz
,
Quantum Kinetic Theory
, 2nd ed. (
Springer International Publishing Switzerland
,
2016
).
62.
N.
Säkkinen
,
Y.
Peng
,
H.
Appel
, and
R.
van Leeuwen
, “
Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer
,”
J. Chem. Phys.
143
(
23
),
234102
(
2015
).
63.
W.
Hoyer
,
M.
Kira
, and
S. W.
Koch
,
Cluster Expansion in Semiconductor Quantum Optics
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2004
), pp.
309
335
.
64.
R.
Zimmermann
and
J.
Wauer
, “
Non-Markovian relaxation in semiconductors: An exactly soluble model
,”
J. Lumin.
58
(
1
),
271
274
(
1994
).
65.
H.
Lohmeyer
,
V. M.
Axt
, and
T.
Kuhn
, “
Electron-phonon quantum kinetics beyond the second-order Born approximation
,”
AIP Conf. Proc.
772
(
1
),
907
908
(
2005
).
66.
T. J.
Park
and
J. C.
Light
, “
Unitary quantum time evolution by iterative Lanczos reduction
,”
J. Chem. Phys.
85
(
10
),
5870
5876
(
1986
).
67.
J.
Flick
, “
Exact nonadiabatic many-body dynamics: Electron-phonon coupling in photoelectron spectroscopy and light-matter interactions in quantum electrodynamical density-functional theory
,” Ph.D. thesis,
Humboldt-Universität zu Berlin
,
Berlin
,
2016
.
68.
C.
Riek
,
D. V.
Seletskiy
,
A. S.
Moskalenko
,
J. F.
Schmidt
,
P.
Krauspe
,
S.
Eckart
,
S.
Eggert
,
G.
Burkard
, and
A.
Leitenstorfer
, “
Direct sampling of electric-field vacuum fluctuations
,”
Science
350
(
6259
),
420
423
(
2015
).
69.
I.-C.
Benea-Chelmus
,
F. F.
Settembrini
,
G.
Scalari
, and
J.
Faist
, “
Electric field correlation measurements on the electromagnetic vacuum state
,”
Nature
568
(
7751
),
202
(
2019
).
70.
D.
Kremp
,
M.
Bonitz
,
W. D.
Kraeft
, and
M.
Schlanges
, “
Non-Markovian Boltzmann equation
,”
Ann. Phys.
258
(
2
),
320
359
(
1997
).
71.
M. P.
von Friesen
,
C.
Verdozzi
, and
C.-O.
Almbladh
, “
Successes and failures of Kadanoff-Baym dynamics in Hubbard nanoclusters
,”
Phys. Rev. Lett.
103
(
17
),
176404
(
2009
).
72.
C.
Verdozzi
,
D.
Karlsson
,
M. P.
von Friesen
,
C.-O.
Almbladh
, and
U.
von Barth
, “
Some open questions in TDDFT: Clues from lattice models and Kadanoff–Baym dynamics
,”
Chem. Phys.
391
(
1
),
37
49
(
2011
).
73.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
2013
).
74.
M.
Florian
,
C.
Gies
,
J.
Frank
,
H. A. M.
Leymann
, and
J.
Wiersig
, “
Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method
,”
Phys. Rev. B
87
(
16
),
165306
(
2013
).
75.
H. A. M.
Leymann
,
A.
Foerster
, and
J.
Wiersig
, “
Expectation value based equation-of-motion approach for open quantum systems: A general formalism
,”
Phys. Rev. B
89
(
8
),
085308
(
2014
).
76.
M.
Richter
,
A.
Carmele
,
A.
Sitek
, and
A.
Knorr
, “
Few-photon model of the optical emission of semiconductor quantum dots
,”
Phys. Rev. Lett.
103
(
8
),
087407
(
2009
).
77.
R.
Jestädt
,
M.
Ruggenthaler
,
M. J. T.
Oliveira
,
A.
Rubio
, and
H.
Appel
, “
Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: Fundamentals, implementation, and nano-optical applications
,” preprint arXiv:1812.05049 (
2018
).
78.

We have verified that in the parameter regimes studied in this work including the quadratic term into adjusted eigenstates, according to the Hamiltonian ĤA+α=12N12(λαμ^)2, has no qualitative influence on the time-evolution of the observables associated with the cavity-bound emission process.

79.

As the exponential scaling permits the inclusion of higher photon states for the given model, we ensured convergence investigating a related 3-level system based on a screened Hydrogen atom with 1/10 of the atomic binding potential coupled to the 100 lowest harmonics of the former cavity. Including the three-photon states resulted in marginal numerical changes such that we deem the selected two-photon states sufficient for the investigated model.

You do not currently have access to this content.