The interparticle Coulombic decay process in paired quantum dots is studied by electron dynamics calculations. We consider a pair of Coulomb-coupled one-electron charged gallium arsenide quantum dots embedded in a nanowire. The two-electron decay process is approximately described by a single active electron model. Within this model, we employ the time-dependent wavepacket approach to the Fermi golden rule (introduced in the context of vibrational predissociation) to calculate autoionization rates, which are compared to exact rates obtained from fully correlated two-electron dynamics calculations. We found that the approximate decay rates agree well with the exact results in the limit of sufficiently separated quantum dots. Finally, we explore whether the short-range behavior of the new model can be further enhanced by the inclusion of local exchange effects by means of regularization of the Coulomb-potential based on a Jastrow-Slater wavefunction. The proposed method may open a route to study the interparticle Coulombic decay in more intricate systems, e.g., paired metal-nanoparticle—quantum dot systems.

1.
L. S.
Cederbaum
,
J.
Zobeley
, and
F.
Tarantelli
, “
Giant intermolecular decay and fragmentation of clusters
,”
Phys. Rev. Lett.
79
,
4778
4781
(
1997
).
2.
V.
Averbukh
,
P.
Demekhin
,
P.
Kolorenč
,
S.
Scheit
,
S.
Stoychev
,
A.
Kuleff
,
Y.-C.
Chiang
,
K.
Gokhberg
,
S.
Kopelke
,
N.
Sisourat
, and
L.
Cederbaum
, “
Interatomic electronic decay processes in singly and multiply ionized clusters
,”
J. Electron Spectrosc. Relat. Phenom.
183
,
36
47
(
2011
).
3.
U.
Hergenhahn
, “
Production of low kinetic energy electrons and energetic ion pairs by intermolecular Coulombic decay
,”
Int. J. Radiat. Biol.
88
,
871
883
(
2012
).
4.
T.
Jahnke
, “
Interatomic and intermolecular Coulombic decay: The coming of age story
,”
J. Phys. B.
48
,
082001
(
2015
).
5.
R.
Santra
,
J.
Zobeley
,
L. S.
Cederbaum
, and
N.
Moiseyev
, “
Interatomic Coulombic decay in van der Waals clusters and impact of nuclear motion
,”
Phys. Rev. Lett.
85
,
4490
4493
(
2000
).
6.
R.
Santra
,
J.
Zobeley
, and
L. S.
Cederbaum
, “
Electronic decay of valence holes in clusters and condensed matter
,”
Phys. Rev. B
64
,
245104
(
2001
).
7.
J.
Zobeley
,
R.
Santra
, and
L. S.
Cederbaum
, “
Electronic decay in weakly bound heteroclusters: Energy transfer versus electron transfer
,”
J. Chem. Phys.
115
,
5076
5088
(
2001
).
8.
T.
Jahnke
,
A.
Czasch
,
M. S.
Schöffler
,
S.
Schössler
,
A.
Knapp
,
M.
Käsz
,
J.
Titze
,
C.
Wimmer
,
K.
Kreidi
,
R. E.
Grisenti
,
A.
Staudte
,
O.
Jagutzki
,
U.
Hergenhahn
,
H.
Schmidt-Böcking
, and
R.
Dörner
, “
Experimental observation of interatomic Coulombic decay in neon dimers
,”
Phys. Rev. Lett.
93
,
163401
(
2004
).
9.
S.
Marburger
,
O.
Kugeler
,
U.
Hergenhahn
, and
T.
Möller
, “
Experimental evidence for interatomic Coulombic decay in Ne clusters
,”
Phys. Rev. Lett.
90
,
203401
(
2003
).
10.
G.
Öhrwall
,
M.
Tchaplyguine
,
M.
Lundwall
,
R.
Feifel
,
H.
Bergersen
,
T.
Rander
,
A.
Lindblad
,
J.
Schulz
,
S.
Peredkov
,
S.
Barth
,
S.
Marburger
,
U.
Hergenhahn
,
S.
Svensson
, and
O.
Björneholm
, “
Femtosecond interatomic Coulombic decay in free neon clusters: Large lifetime differences between surface and bulk
,”
Phys. Rev. Lett.
93
,
173401
(
2004
).
11.
N.
Sisourat
,
N. V.
Kryzhevoi
,
P.
Kolorenc
,
S.
Scheit
,
T.
Jahnke
, and
L. S.
Cederbaum
, “
Ultralong-range energy transfer by interatomic Coulombic decay in an extreme quantum system
,”
Nat. Phys.
6
,
508
511
(
2010
).
12.
E. F.
Aziz
,
N.
Ottosson
,
M.
Faubel
,
I. V.
Hertel
, and
B.
Winter
, “
Interaction between liquid water and hydroxide revealed by core-hole de-excitation
,”
Nature
455
,
89
91
(
2008
).
13.
C. P.
Schwartz
,
S.
Fatehi
,
R. J.
Saykally
, and
D.
Prendergast
, “
Importance of electronic relaxation for inter-Coulombic decay in aqueous systems
,”
Phys. Rev. Lett.
105
,
198102
(
2010
).
14.
T.
Jahnke
,
H.
Sann
,
T.
Havermeier
,
K.
Kreidi
,
C.
Stuck
,
M.
Meckel
,
M.
Schöffler
,
N.
Neumann
,
R.
Wallauer
,
S.
Voss
,
A.
Czasch
,
O.
Jagutzki
,
A.
Malakzadeh
,
F.
Afaneh
,
T.
Weber
,
H.
Schmidt-Böcking
, and
R.
Dörner
, “
Ultrafast energy transfer between water molecules
,”
Nat. Phys.
6
,
139
142
(
2010
).
15.
S.
Thürmer
,
M.
Ončák
,
N.
Ottosson
,
R.
Seidel
,
U.
Hergenhahn
,
S. E.
Bradforth
,
P.
Slavícek
, and
B.
Winter
, “
On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation
,”
Nat. Chem.
5
,
590
596
(
2013
).
16.
P. H. P.
Harbach
,
M.
Schneider
,
S.
Faraji
, and
A.
Dreuw
, “
Intermolecular Coulombic decay in biology: The initial electron detachment from FADH in DNA photolyases
,”
J. Phys. Chem. Lett.
4
,
943
949
(
2013
).
17.
E.
Surdutovich
and
A.
Solov’yov
, “
Double strand breaks in DNA resulting from double ionization events
,”
Eur. Phys. J. D
66
,
206
(
2012
).
18.
S.
Kazandjian
,
J.
Rist
,
M.
Weller
,
F.
Wiegandt
,
D.
Aslitürk
,
S.
Grundmann
,
M.
Kircher
,
G.
Nalin
,
D.
Pitters
,
I.
Vela Pérez
,
M.
Waitz
,
G.
Schiwietz
,
B.
Griffin
,
J. B.
Williams
,
R.
Dörner
,
M.
Schöffler
,
T.
Miteva
,
F.
Trinter
,
T.
Jahnke
, and
N.
Sisourat
, “
Frustrated Coulomb explosion of small helium clusters
,”
Phys. Rev. A
98
,
050701(R)
(
2018
).
19.
M.
Shcherbinin
,
A. C.
LaForge
,
V.
Sharma
,
M.
Devetta
,
R.
Richter
,
R.
Moshammer
,
T.
Pfeifer
, and
M.
Mudrich
, “
Interatomic Coulombic decay in helium nanodroplets
,”
Phys. Rev. A
96
,
013407
(
2017
).
20.
R. A.
Wilhelm
,
E.
Gruber
,
J.
Schwestka
,
R.
Kozubek
,
T. I.
Madeira
,
J. P.
Marques
,
J.
Kobus
,
A. V.
Krasheninnikov
,
M.
Schleberger
, and
F.
Aumayr
, “
Interatomic Coulombic decay: The mechanism for rapid deexcitation of hollow atoms
,”
Phys. Rev. Lett.
119
,
103401
(
2017
).
21.
I.
Cherkes
and
N.
Moiseyev
, “
Electron relaxation in quantum dots by the interatomic Coulombic decay mechanism
,”
Phys. Rev. B
83
,
113303
(
2011
).
22.
A.
Bande
,
K.
Gokhberg
, and
L. S.
Cederbaum
, “
Dynamics of interatomic Coulombic decay in quantum dots
,”
J. Chem. Phys.
135
,
144112
(
2011
).
23.
A.
Bande
, “
Electron dynamics of interatomic Coulombic decay in quantum dots induced by a laser field
,”
J. Chem. Phys.
138
,
214104
(
2013
).
24.
P.
Dolbundalchok
,
D.
Peláez
,
E. F.
Aziz
, and
A.
Bande
, “
Geometrical control of the interatomic Coulombic decay process in quantum dots for infrared photodetectors
,”
J. Comput. Chem.
37
,
2249
2259
(
2016
).
25.
A.
Haller
,
Y.-C.
Chiang
,
M.
Menger
,
E. F.
Aziz
, and
A.
Bande
, “
Strong field control of the interatomic Coulombic decay process in quantum dots
,”
Chem. Phys.
482
,
135
145
(
2016
).
26.
F.
Weber
,
E. F.
Aziz
, and
A.
Bande
, “
Interdependence of ICD rates in paired quantum dots on geometry
,”
J. Comput. Chem.
38
,
2141
2150
(
2017
).
27.
T.
Goldzak
,
L.
Gantz
,
I.
Gilary
,
G.
Bahir
, and
N.
Moiseyev
, “
Interatomic Coulombic decay in two coupled quantum wells
,”
Phys. Rev. B
91
,
165312
(
2015
).
28.
T.
Goldzak
,
L.
Gantz
,
I.
Gilary
,
G.
Bahir
, and
N.
Moiseyev
, “
Vertical currents due to interatomic Coulombic decay in experiments with two coupled quantum wells
,”
Phys. Rev. B
93
,
045310
(
2016
).
29.
I.
Piquero-Zulaica
,
J.
Lobo-Checa
,
A.
Sadeghi
,
Z. M. A.
El-Fattah
,
C.
Mitsui
,
T.
Okamoto
,
R.
Pawlak
,
T.
Meier
,
A.
Arnau
,
J. E.
Ortega
,
J.
Takeya
,
S.
Goedecker
,
E.
Meyer
, and
S.
Kawai
, “
Precise engineering of quantum dot array coupling through their barrier widths
,”
Nat. Commun.
8
,
787
(
2017
).
30.
A.
Kurzmann
,
P.
Stegmann
,
J.
Kerski
,
R.
Schott
,
A.
Ludwig
,
A. D.
Wieck
,
J.
König
,
A.
Lorke
, and
M.
Geller
, “
Optical detection of single-electron tunneling into a semiconductor quantum dot
,”
Phys. Rev. Lett.
122
,
247403
(
2019
).
31.
A.
Haller
,
D.
Peláez
, and
A.
Bande
, “
Inter-Coulombic decay in laterally arranged quantum dots controlled by polarized lasers
,”
J. Phys. Chem. C
123
,
14754
14765
(
2019
).
32.
A.
Haller
and
A.
Bande
, “
Favoritism of quantum dot inter-Coulombic decay over direct and multi-photon ionization by laser strength and focus
,”
J. Chem. Phys.
149
,
134102
(
2018
).
33.
A.
Bande
, “
Acoustic phonon impact on the inter-Coulombic decay process in charged quantum dot pairs
,”
Mol. Phys.
117
,
2014
2028
(
2019
).
34.
F.
Langkabel
,
M.
Lützner
, and
A.
Bande
, “
Interparticle Coulombic decay dynamics along single- and double-ionization pathways
,”
J. Phys. Chem. C
123
,
21757
21762
(
2019
).
35.
F. M.
Pont
,
A.
Bande
, and
L. S.
Cederbaum
, “
Controlled energy-selected electron capture and release in double quantum dots
,”
Phys. Rev. B
88
,
241304
(
2013
).
36.
F. M.
Pont
,
A.
Bande
, and
L. S.
Cederbaum
, “
Electron-correlation driven capture and release in double quantum dots
,”
J. Phys.: Condens. Matter
28
,
075301
(
2016
).
37.
A.
Molle
,
E. R.
Berikaa
,
F. M.
Pont
, and
A.
Bande
, “
Quantum size effect affecting environment assisted electron capture in quantum confinements
,”
J. Chem. Phys.
150
,
224105
(
2019
).
38.
F. M.
Pont
,
A.
Molle
,
E. R.
Berikaa
,
S.
Bubeck
, and
A.
Bande
, “
Predicting the performance of the inter-Coulombic electron capture from single-electron quantities
,”
J. Phys.: Condens. Matter
32
,
065302
(
2019
).
39.
G.
Bastard
,
Wave Mechanics Applied to Semiconductor Heterostructures
, Monographies de physique (
Les Éditions de Physique
,
1988
).
40.
P.
Villarreal
,
S.
Miret-Artés
,
O.
Roncero
,
G.
Delgado-Barrio
,
J. A.
Beswick
,
N.
Halberstadt
, and
R. D.
Coalson
, “
A wave packet Golden Rule treatment of vibrational predissociation
,”
J. Chem. Phys.
94
,
4230
4233
(
1991
).
41.
See http://matprop.ru/GaAs_basic for NSM Archive - Physical Properties of Semiconductors; accessed
November 21, 2018
.
42.
S.
Bednarek
,
B.
Szafran
,
T.
Chwiej
, and
J.
Adamowski
, “
Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures
,”
Phys. Rev. B
68
,
045328
(
2003
).
43.
W.
Foulkes
,
L.
Mitas
,
R.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
44.
R.
Jastrow
, “
Many-body problem with strong forces
,”
Phys. Rev.
98
,
1479
1484
(
1955
).
45.
S. F.
Boys
and
N. C.
Handy
, “
The determination of energies and wavefunctions with full electronic correlation
,”
Proc. R. Soc. A
310
,
43
61
(
1969
).
46.
T.
Kato
, “
On the eigenfunctions of many-particle systems in quantum mechanics
,”
Commun. Pure Appl. Math.
10
,
151
177
(
1957
).
47.
D.
Bressanini
,
G.
Morosi
, and
M.
Mella
, “
Robust wave function optimization procedures in quantum Monte Carlo methods
,”
J. Chem. Phys.
116
,
5345
5350
(
2002
).
48.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
49.
U.
Manthe
,
H.
Meyer
, and
L. S.
Cederbaum
, “
Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl
,”
J. Chem. Phys.
97
,
3199
3213
(
1992
).
50.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH Package, Version 8.2, 2000. H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). Current version: 8.4.12 (2016). See http://mctdh.uni-hd.de.
51.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
Wiley VCH
,
Weinheim
,
2009
).
52.
M.
Beck
,
A.
Jäckle
,
G.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
53.
P.
Stoica
and
R.
Moses
,
Spectral Analysis of Signals
(
Prentice-Hall
,
New Jersey
,
2005
).
You do not currently have access to this content.