We present a benchmarking study on the performance of two methods at the forefront of studying electronic metastable states of molecules: the orbital stabilization method and the method of complex absorbing potential augmented Hamiltonians. The performance of the two methods is compared for the calculation of shape resonances in small to medium-sized molecules (up to 15 atoms) at the equation of motion coupled cluster with singles and doubles for the electron attachment level of methodology using even-tempered Gaussian basis sets. The theoretical positions and widths of shape resonances obtained from both methods are compared to the experimentally determined electron affinities and lifetimes. The challenges that accompany the theoretical estimation of resonance positions and widths for medium to large-sized systems with an increase in basis set size are also discussed.

1.
C. R.
Arumainayagam
,
H.-L.
Lee
,
R. B.
Nelson
,
D. R.
Haines
, and
R. P.
Gunawardane
, “
Low-energy electron-induced reactions in condensed matter
,”
Surf. Sci. Rep.
65
,
1
44
(
2010
).
2.
M. C.
Boyer
,
N.
Rivas
,
A. A.
Tran
,
C. A.
Verish
, and
C. R.
Arumainayagam
, “
The role of low-energy (≤20 eV) electrons in astrochemistry
,”
Surf. Sci.
652
,
26
32
(
2016
).
3.
L.
Sanche
, “
Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons
,”
Mass Spectrom. Rev.
21
,
349
369
(
2002
).
4.
E.
Böhler
,
J.
Warneke
, and
P.
Swiderek
, “
Control of chemical reactions and synthesis by low-energy electrons
,”
Chem. Soc. Rev.
42
,
9219
9231
(
2013
).
5.
Y.
Zheng
,
P.
Cloutier
,
D. J.
Hunting
,
L.
Sanche
, and
J. R.
Wagner
, “
Chemical basis of DNA sugar-phosphate cleavage by low-energy electrons
,”
J. Am. Chem. Soc.
127
,
16592
16598
(
2005
).
6.
E.
Alizadeh
,
T. M.
Orlando
, and
L.
Sanche
, “
Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA
,”
Annu. Rev. Phys. Chem.
66
,
379
398
(
2015
).
7.
L.
Sanche
, “
Dissociative attachment and surface reactions induced by low-energy electrons
,”
J. Vac. Sci. Technol., B
10
,
196
200
(
1992
).
8.
J.
Rackwitz
,
J.
Kopyra
,
I.
Dąbkowska
,
K.
Ebel
,
M. L.
Ranković
,
A. R.
Milosavljević
, and
I.
Bald
, “
Sensitizing DNA towards low-energy electrons with 2-fluoroadenine
,”
Angew. Chem., Int. Ed.
55
,
10248
10252
(
2016
).
9.
J.
Simons
, “
Theoretical study of negative molecular ions
,”
Annu. Rev. Phys. Chem.
62
,
107
128
(
2011
).
10.
J. M.
Herbert
, “
The quantum chemistry of loosely bound electrons
,”
Rev. Comput. Chem.
28
,
391
517
(
2015
).
11.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
(
Cambridge University Press
,
2011
).
12.
A.
Hazi
,
A.
Orel
, and
T.
Rescigno
, “
Ab initio study of dissociative attachment of low-energy electrons to F2
,”
Phys. Rev. Lett.
46
,
918
(
1981
).
13.
J.
Horáček
,
M.
Čížek
,
K.
Houfek
,
P.
Kolorenč
, and
W.
Domcke
, “
Dissociative electron attachment and vibrational excitation of H2 by low-energy electrons: Calculations based on an improved nonlocal resonance model
,”
Phys. Rev. A
70
,
052712
(
2004
).
14.
H.
Abdoul-Carime
,
M.
Huels
,
F.
Brüning
,
E.
Illenberger
, and
L.
Sanche
, “
Dissociative electron attachment to gas-phase 5-bromouracil
,”
J. Chem. Phys.
113
,
2517
2521
(
2000
).
15.
S.
Tonzani
and
C. H.
Greene
, “
Radiation damage to DNA: Electron scattering from the backbone subunits
,”
J. Chem. Phys.
125
,
094504
(
2006
).
16.
T.
Rescigno
,
B.
Lengsfield
 III
, and
C.
McCurdy
, “
The incorporation of modern electronic structure methods in electron–molecule collision problems: Variational calculations using the complex Kohn method
,” in
Modern Electronic Structure Theory: Part I
(
World Scientific
,
1995
), pp.
501
588
.
17.
P.
Burke
and
W.
Robb
, “
The R-matrix theory of atomic processes
,” in
Advances in Atomic and Molecular Physics
(
Elsevier
,
1976
), Vol. 11, pp.
143
214
.
18.
R. F.
da Costa
,
M. T.
do Nascimento Varella
,
M. H.
Bettega
, and
M. A.
Lima
, “
Recent advances in the application of the Schwinger multichannel method with pseudopotentials to electron-molecule collisions
,”
Eur. Phys. J. D
69
,
159
(
2015
).
19.
F. A.
Gianturco
and
W. M.
Huo
,
Computational Methods for Electron–Molecule Collisions
(
Springer Science & Business Media
,
2013
).
20.
A.
White
, “
The extension of bound state electronic structure methods to molecular resonances
,” Ph.D. thesis,
University of California
,
Berkeley
,
2017
.
21.
N.
Moiseyev
,
P.
Certain
, and
F.
Weinhold
, “
Resonance properties of complex-rotated Hamiltonians
,”
Mol. Phys.
36
,
1613
1630
(
1978
).
22.
N.
Moiseyev
, “
Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling
,”
Phys. Rep.
302
,
212
293
(
1998
).
23.
W. P.
Reinhardt
, “
Complex coordinates in the theory of atomic and molecular structure and dynamics
,”
Annu. Rev. Phys. Chem.
33
,
223
255
(
1982
).
24.
J.
Aguilar
and
J.
Combes
, “
A class of analytic perturbations for one-body Schrodinger Hamiltonians
,”
Commun. Math. Phys.
22
,
269
279
(
1971
).
25.
T.-C.
Jagau
,
K. B.
Bravaya
, and
A. I.
Krylov
, “
Extending quantum chemistry of bound states to electronic resonances
,”
Annu. Rev. Phys. Chem.
68
,
525
(
2017
).
26.
U.
Riss
and
H.-D.
Meyer
, “
Calculation of resonance energies and widths using the complex absorbing potential method
,”
J. Phys. B: At., Mol. Opt. Phys.
26
,
4503
(
1993
).
27.
Y.
Kanazawa
,
M.
Ehara
, and
T.
Sommerfeld
, “
Low-lying π* resonances of standard and rare DNA and RNA bases studied by the projected CAP/SAC–CI method
,”
J. Phys. Chem. A
120
,
1545
1553
(
2016
).
28.
Y.
Zhou
and
M.
Ernzerhof
, “
Calculating the lifetimes of metastable states with complex density functional theory
,”
J. Phys. Chem. Lett.
3
,
1916
1920
(
2012
).
29.
D.
Zuev
,
T.-C.
Jagau
,
K. B.
Bravaya
,
E.
Epifanovsky
,
Y.
Shao
,
E.
Sundstrom
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
141
,
024102
(
2014
).
30.
T.
Sommerfeld
, “
Intramolecular electron transfer from dipole-bound to valence orbitals: Uracil and 5-chlorouracil
,”
J. Phys. Chem. A
108
,
9150
9154
(
2004
).
31.
R.
Santra
and
L.
Cederbaum
, “
Complex absorbing potentials in the framework of electron propagator theory. I. General formalism
,”
J. Chem. Phys.
117
,
5511
5521
(
2002
).
32.
A. A.
Kunitsa
,
A. A.
Granovsky
, and
K. B.
Bravaya
, “
CAP-XMCQDPT2 method for molecular electronic resonances
,”
J. Chem. Phys.
146
,
184107
(
2017
).
33.
T.
Sommerfeld
,
U.
Riss
,
H.
Meyer
,
L.
Cederbaum
,
B.
Engels
, and
H.
Suter
, “
Temporary anions-calculation of energy and lifetime by absorbing potentials: The resonance
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
4107
(
1998
).
34.
C.
McCurdy
, Jr.
and
T.
Rescigno
, “
Extension of the method of complex basis functions to molecular resonances
,”
Phys. Rev. Lett.
41
,
1364
(
1978
).
35.
J.
Morgan
and
B.
Simon
, “
The calculation of molecular resonances by complex scaling
,”
J. Phys. B: At. Mol. Phys.
14
,
L167
(
1981
).
36.
A.
Ben-Asher
and
N.
Moiseyev
, “
On the equivalence of different methods for calculating resonances: From complex Gaussian basis set to reflection-free complex absorbing potentials via the smooth exterior scaling transformation
,”
J. Chem. Theory Comput.
12
,
2542
2552
(
2016
).
37.
A. F.
White
,
C. W.
McCurdy
, and
M.
Head-Gordon
, “
Restricted and unrestricted non-Hermitian Hartree-Fock: Theory, practical considerations, and applications to metastable molecular anions
,”
J. Chem. Phys.
143
,
074103
(
2015
).
38.
A. F.
White
,
M.
Head-Gordon
, and
C. W.
McCurdy
, “
Complex basis functions revisited: Implementation with applications to carbon tetrafluoride and aromatic N-containing heterocycles within the static-exchange approximation
,”
J. Chem. Phys.
142
,
054103
(
2015
).
39.
A. F.
White
,
E.
Epifanovsky
,
C. W.
McCurdy
, and
M.
Head-Gordon
, “
Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering
,”
J. Chem. Phys.
146
,
234107
(
2017
).
40.
A. U.
Hazi
and
H. S.
Taylor
, “
Stabilization method of calculating resonance energies: Model problem
,”
Phys. Rev. A
1
,
1109
(
1970
).
41.
H. S.
Taylor
, “
Models, interpretations, and calculations concerning resonant electron scattering processes in atoms and molecules
,”
Adv. Chem. Phys.
18
,
91
147
(
1970
).
42.
J.
Simons
, “
Resonance state lifetimes from stabilization graphs
,”
J. Chem. Phys.
75
,
2465
2467
(
1981
).
43.
J.-Y.
Chao
,
M.
Falcetta
, and
K.
Jordan
, “
Application of the stabilization method to the N2 (12Πg) and Mg(12P) temporary anion states
,”
J. Chem. Phys.
93
,
1125
1135
(
1990
).
44.
K. D.
Jordan
,
V. K.
Voora
, and
J.
Simons
, “
Negative electron affinities from conventional electronic structure methods
,” in
A Festschrift from Theoretical Chemistry Accounts
, edited by
T. H.
Dunning
, Jr.
(
Springer
,
2015
), pp.
85
99
.
45.
M. F.
Falcetta
,
L. A.
DiFalco
,
D. S.
Ackerman
,
J. C.
Barlow
, and
K. D.
Jordan
, “
Assessment of various electronic structure methods for characterizing temporary anion states: Application to the ground state anions of N2, C2H2, C2H4, and C6H6
,”
J. Phys. Chem. A
118
,
7489
7497
(
2014
).
46.
T. C.
Thompson
and
D. G.
Truhlar
, “
New method for estimating widths of scattering resonances from real stabilization graphs
,”
Chem. Phys. Lett.
92
,
71
75
(
1982
).
47.
C.
McCurdy
and
J.
McNutt
, “
On the possibility of analytically continuing stabilization graphs to determine resonance positions and widths accurately
,”
Chem. Phys. Lett.
94
,
306
310
(
1983
).
48.
K.
Jordan
, “
Construction of potential energy curves in avoided crossing situations
,”
Chem. Phys.
9
,
199
204
(
1975
).
49.
J.
Horáček
,
I.
Paidarová
, and
R.
Čurík
, “
On a simple way to calculate electronic resonances for polyatomic molecules
,”
J. Chem. Phys.
143
,
184102
(
2015
).
50.
M.
Head-Gordon
,
A. F.
White
, and
C. W.
McCurdy
, “
Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules
,”
J. Chem. Phys.
146
,
044112
(
2017
).
51.
T.-C.
Jagau
,
D.
Zuev
,
K. B.
Bravaya
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
A fresh look at resonances and complex absorbing potentials: Density matrix-based approach
,”
J. Phys. Chem. Lett.
5
,
310
315
(
2014
).
52.
A. A.
Kunitsa
and
K. B.
Bravaya
, “
First-principles calculations of the energy and width of the 2au shape resonance in p-benzoquinone: A gateway state for electron transfer
,”
J. Phys. Chem. Lett.
6
,
1053
1058
(
2015
).
53.
H.-Y.
Cheng
and
Y.-S.
Huang
, “
Temporary anion states of p-benzoquinone: Shape and core-excited resonances
,”
Phys. Chem. Chem. Phys.
16
,
26306
26313
(
2014
).
54.
T.-C.
Jagau
and
A. I.
Krylov
, “
Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments
,”
J. Chem. Phys.
144
,
054113
(
2016
).
55.
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to fock space
,”
Annu. Rev. Phys. Chem.
59
,
433
462
(
2008
).
56.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Wood cock
 III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the q-chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
57.
I.
Haritan
and
N.
Moiseyev
, “
On the calculation of resonances by analytic continuation of eigenvalues from the stabilization graph
,”
J. Chem. Phys.
147
,
014101
(
2017
).
58.
K.
Jordan
, “
Padé approximants: An alternative analytic representation of the potential curves for diatomic molecules
,”
J. Mol. Spectrosc.
56
,
329
331
(
1975
).
59.
L.
Yu
and
J. S.-Y.
Chao
, “
Application of analytic continuations to avoided crossings
,”
J. Chin. Chem. Soc.
40
,
11
22
(
1993
).
60.
J.
Bentley
and
D. M.
Chipman
, “
Accurate width and position of lowest 1s resonance in H calculated from real-valued stabilization graphs
,”
J. Chem. Phys.
86
,
3819
3828
(
1987
).
61.
M. A.
Fennimore
and
S.
Matsika
, “
Core-excited and shape resonances of uracil
,”
Phys. Chem. Chem. Phys.
18
,
30536
30545
(
2016
).
62.
T.
Sommerfeld
and
R.
Santra
, “
Efficient method to perform CAP/CI calculations for temporary anions
,”
Int. J. Quantum Chem.
82
,
218
226
(
2001
).
63.
M.
Ehara
and
T.
Sommerfeld
, “
CAP/SAC-CI method for calculating resonance states of metastable anions
,”
Chem. Phys. Lett.
537
,
107
112
(
2012
).
64.
R.
Santra
and
L. S.
Cederbaum
, “
An efficient combination of computational techniques for investigating electronic resonance states in molecules
,”
J. Chem. Phys.
115
,
6853
6861
(
2001
).
65.
R.
Santra
and
L. S.
Cederbaum
, “
Non-Hermitian electronic theory and applications to clusters
,”
Phys. Rep.
368
,
1
117
(
2002
).
66.
R. J.
Bartlett
, “
Coupled-cluster theory and its equation of motion extensions
,”
WIREs: Comput. Mol. Sci.
2
,
126
(
2012
).
67.
M.
Ehara
,
Y.
Kanazawa
, and
T.
Sommerfeld
, “
Low-lying π resonances associated with cyano groups: A CAP/SAC-CI study
,”
Chem. Phys.
482
,
169
177
(
2017
).
68.
H.
Ehrhardt
,
L.
Langhans
,
F.
Linder
, and
H. S.
Taylor
, “
Resonance scattering of slow electrons from H2 and CO angular distributions
,”
Phys. Rev.
173
,
222
230
(
1968
).
69.
M.
Berman
,
H.
Estrada
,
L. S.
Cederbaum
, and
W.
Domcke
, “
Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: The 2.3-eV shape resonance in N2
,”
Phys. Rev. A
28
,
1363
(
1983
).
70.
T.-C.
Jagau
and
A. I.
Krylov
, “
Complex absorbing potential equation-of-motion coupled-cluster method yields smooth and internally consistent potential energy surfaces and lifetimes for molecular resonances
,”
J. Phys. Chem. Lett.
5
,
3078
3085
(
2014
).
71.
A.
Ghosh
,
N.
Vaval
, and
S.
Pal
, “
Equation-of-motion coupled-cluster method for the study of shape resonance
,”
J. Chem. Phys.
136
,
234110
(
2012
).
72.
N.
Chandra
, “
Low-energy electron scattering from CO. II. Ab initio study using the frame-transformation theory
,”
Phys. Rev. A
16
,
80
(
1977
).
73.
S.
Mahalakshmi
,
A.
Venkatnathan
, and
M. K.
Mishra
, “
Application of higher order decouplings of the dilated electron propagator to 2π CO, 2πgN2 and 2πg C2H2 shape resonances
,”
J. Chem. Phys.
115
,
4549
4557
(
2001
).
74.
A. F.
Izmaylov
,
S. O.
Adamson
, and
A.
Zaitsevskii
, “
Multipartitioning many-body perturbation theory calculations on temporary anions: Applications to N2 and CO
,”
J. Phys. B: At., Mol. Opt. Phys.
37
,
2321
(
2004
).
75.
T.
Rescigno
,
A.
Orel
, and
C.
McCurdy
, “
Application of complex coordinate SCF techniques to a molecular shape resonance: The 2Πg state of N2.
,”
J. Chem. Phys.
73
,
6347
6348
(
1980
).
76.
H.-D.
Meyer
, “
Optical potentials for electron-molecule scattering: A comparative study on the N22πg resonance
,”
Phys. Rev. A
40
,
5605
(
1989
).
77.
A. U.
Hazi
,
T. N.
Rescigno
, and
M.
Kurilla
, “
Cross sections for resonant vibrational excitation of N2 by electron impact
,”
Phys. Rev. A
23
,
1089
(
1981
).
78.
Y.
Sajeev
,
R.
Santra
, and
S.
Pal
, “
Correlated complex independent particle potential for calculating electronic resonances
,”
J. Chem. Phys.
123
,
204110
(
2005
).
79.
Y.
Sajeev
,
R.
Santra
, and
S.
Pal
, “
Analytically continued fock space multireference coupled-cluster theory: Application to the 2πg shape resonance in e-N2 scattering
,”
J. Chem. Phys.
122
,
234320
(
2005
).
80.
S.
Feuerbacher
,
T.
Sommerfeld
,
R.
Santra
, and
L. S.
Cederbaum
, “
Complex absorbing potentials in the framework of electron propagator theory. II. Application to temporary anions
,”
J. Chem. Phys.
118
,
6188
6199
(
2003
).
81.
B. M.
Nestmann
and
S.
Peyerimhoff
, “
CI method for determining the location and width of resonances in electron-molecule collision processes
,”
J. Phys. B: At. Mol. Phys.
18
,
4309
(
1985
).
82.
M.
Honigmann
,
R. J.
Buenker
, and
H.-P.
Liebermann
, “
Complex self-consistent field and multireference single-and double-excitation configuration interaction calculations for the πg2 resonance state of N2.
,”
J. Chem. Phys.
125
,
234304
(
2006
).
83.
A.
Landau
and
N.
Moiseyev
, “
Molecular resonances by removing complex absorbing potentials via Padé; application to CO and N2.
,”
J. Chem. Phys.
145
,
164111
(
2016
).
84.
D.
Bhattacharya
,
A.
Ben-Asher
,
I.
Haritan
,
M.
Pawlak
,
A.
Landau
, and
N.
Moiseyev
, “
Polyatomic ab initio complex potential energy surfaces: Illustration of ultracold collisions
,”
J. Chem. Theory Comput.
13
,
1682
1690
(
2017
).
85.
T.-C.
Jagau
, “
Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions
,”
J. Chem. Phys.
148
,
024104
(
2018
).
86.
T.
Sommerfeld
and
H.-D.
Meyer
, “
Computing the energy-dependent width of temporary anions from l2 ab initio methods
,”
J. Phys. B: At., Mol. Opt. Phys.
35
,
1841
(
2002
).
87.
T.-C.
Jagau
,
D. B.
Dao
,
N. S.
Holtgrewe
,
A. I.
Krylov
, and
R.
Mabbs
, “
Same but different: Dipole-stabilized shape resonances in CuF and AgF
,”
J. Phys. Chem. Lett.
6
,
2786
(
2015
).
88.
M.
Zubek
and
C.
Szmytkowski
, “
Calculation of resonant vibrational excitation of CO by scattering of electrons
,”
J. Phys. B
10
,
L27
(
1977
).
89.
P. D.
Burrow
,
A. E.
Howard
,
A. R.
Johnston
, and
K. D.
Jordan
, “
Temporary anion states of hydrogen cyanide, methyl cyanide, and methylene dicyanide, selected cyanoethylenes, benzonitrile, and tetracyanoquinodimethane
,”
J. Phys. Chem.
96
,
7570
7578
(
1992
).
90.
M.
Ferus
,
P.
Kubelík
,
A.
Knížek
,
A.
Pastorek
,
J.
Sutherland
, and
S.
Civiš
, “
High energy radical chemistry formation of HCN-rich atmospheres on early earth
,”
Sci. Rep.
7
,
6275
(
2017
).
91.
T.
Sommerfeld
and
M.
Ehara
, “
Complex absorbing potentials with Voronoi isosurfaces wrapping perfectly around molecules
,”
J. Chem. Theory Comput.
11
,
4627
4633
(
2015
).
92.
B.
Huskinson
,
M. P.
Marshak
,
C.
Suh
,
S.
Er
,
M. R.
Gerhardt
,
C. J.
Galvin
,
X.
Chen
,
A.
Aspuru-Guzik
,
R. G.
Gordon
, and
M. J.
Aziz
, “
A metal-free organic–inorganic aqueous flow battery
,”
Nature
505
,
195
(
2014
).
93.
R.-a.
Doong
,
C.-c.
Lee
, and
C.-m.
Lien
, “
Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite
,”
Chemosphere
97
,
54
63
(
2014
).
94.
R.
Saini
,
N.
Kaur
, and
S.
Kumar
, “
Quinones based molecular receptors for recognition of anions and metal ions
,”
Tetrahedron
70
,
4285
4307
(
2014
).
95.
M.
Gunner
,
J.
Madeo
, and
Z.
Zhu
, “
Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: Examples from photosynthetic reaction centers
,”
J. Bioenerg. Biomembr.
40
,
509
(
2008
).
96.
A.
Osyczka
,
C. C.
Moser
,
F.
Daldal
, and
P. L.
Dutton
, “
Reversible redox energy coupling in electron transfer chains
,”
Nature
427
,
607
(
2004
).
97.
H.
Nohl
,
W.
Jordan
, and
R. J.
Youngman
, “
Quinones in biology: Functions in electron transfer and oxygen activation
,”
Adv. Free Radical Biol. Med.
2
,
211
279
(
1986
).
98.
M. A.
Colucci
,
G. D.
Couch
, and
C. J.
Moody
, “
Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: From synthetic organic chemistry to compounds with anticancer potential
,”
Org. Biomol. Chem.
6
,
637
656
(
2008
).
99.
C. W.
West
,
J. N.
Bull
,
E.
Antonkov
, and
J. R.
Verlet
, “
Anion resonances of para-benzoquinone probed by frequency-resolved photoelectron imaging
,”
J. Phys. Chem. A
118
,
11346
11354
(
2014
).
100.
D. A.
Horke
,
Q.
Li
,
L.
Blancafort
, and
J. R.
Verlet
, “
Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor
,”
Nat. Chem.
5
,
711
(
2013
).
101.
A.
Loupas
and
J. D.
Gorfinkiel
, “
Resonances in low-energy electron scattering from para-benzoquinone
,”
Phys. Chem. Chem. Phys.
19
,
18252
18261
(
2017
).
102.
C.
Cooper
,
W.
Naff
, and
R.
Compton
, “
Negative ion properties of p-benzoquinone: Electron affinity and compound states
,”
J. Chem. Phys.
63
,
2752
2757
(
1975
).
103.
J.
Schiedt
and
R.
Weinkauf
, “
Resonant photodetachment via shape and feshbach resonances: p-benzoquinone anions as a model system
,”
J. Chem. Phys.
110
,
304
314
(
1999
).
104.
P.
Collins
,
L.
Christophorou
,
E.
Chaney
, and
J.
Carter
, “
Energy dependence of the electron attachment cross section and the transient negative ion lifetime for p-benzoquinone and 1, 4-naphthoquinone
,”
Chem. Phys. Lett.
4
,
646
650
(
1970
).
105.
O.
Khvostenko
,
P.
Shchukin
,
G.
Tuimedov
,
M.
Muftakhov
,
E.
Tseplin
,
S.
Tseplina
, and
V.
Mazunov
, “
Negative ion mass spectrum of the resonance electron capture by molecules of p-benzoquinone
,”
Int. J. Mass Spectrom.
273
,
69
77
(
2008
).
106.
A.
Modelli
and
P.
Burrow
, “
Electron transmission study of the negative ion states of p-benzoquinone, benzaldehyde, and related molecules
,”
J. Phys. Chem.
88
,
3550
3554
(
1984
).
107.
Y.
Honda
,
M.
Hada
,
M.
Ehara
, and
H.
Nakatsuji
, “
Excited and ionized states of p-benzoquinone and its anion radical: SAC-CI theoretical study
,”
J. Phys. Chem. A
106
,
3838
3849
(
2002
).
108.
M. A.
Fennimore
,
T. N.
Karsili
, and
S.
Matsika
, “
Mechanisms of H and CO loss from the uracil nucleobase following low energy electron irradiation
,”
Phys. Chem. Chem. Phys.
19
,
17233
17241
(
2017
).
109.
Y.
Kawarai
,
T.
Weber
,
Y.
Azuma
,
C.
Winstead
,
V.
McKoy
,
A.
Belkacem
, and
D.
Slaughter
, “
Dynamics of the dissociating uracil anion following resonant electron attachment
,”
J. Phys. Chem. Lett.
5
,
3854
3858
(
2014
).
110.
F. F.
Da Silva
,
C.
Matias
,
D.
Almeida
,
G.
García
,
O.
Ingólfsson
,
H. D.
Flosadóttir
,
B.
Ómarsson
,
S.
Ptasińska
,
B.
Puschnigg
,
P.
Scheier
,
P.
Lião-Vieira
, and
S.
Denifl
, “
NCO, a key fragment upon dissociative electron attachment and electron transfer to pyrimidine bases: Site selectivity for a slow decay process
,”
J. Am. Soc. Mass Spectrom.
24
,
1787
1797
(
2013
).
111.
S.
Denifl
,
S.
Ptasińska
,
G.
Hanel
,
B.
Gstir
,
M.
Probst
,
P.
Scheier
, and
T.
Märk
, “
Electron attachment to gas-phase uracil
,”
J. Chem. Phys.
120
,
6557
6565
(
2004
).
112.
S.
Ptasińska
,
S.
Denifl
,
V.
Grill
,
T. D.
Märk
,
E.
Illenberger
, and
P.
Scheier
, “
Bond-and site-selective loss of H from pyrimidine bases
,”
Phys. Rev. Lett.
95
,
093201
(
2005
).
113.
K.
Aflatooni
,
G.
Gallup
, and
P.
Burrow
, “
Electron attachment energies of the DNA bases
,”
J. Phys. Chem. A
102
,
6205
6207
(
1998
).
114.
A.
Landau
,
D.
Bhattacharya
,
I.
Haritan
,
A.
Ben-Asher
, and
N.
Moiseyev
, “
Ab initio complex potential energy surfaces from standard quantum chemistry packages
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2017
), Vol. 74, pp.
321
346
.
115.
Z.
Benda
and
T.-C.
Jagau
, “
Communication: Analytic gradients for the complex absorbing potential equation-of-motion coupled-cluster method
,”
J. Chem. Phys.
146
,
031101
(
2017
).
116.
Z.
Benda
,
K.
Rickmeyer
, and
T.-C.
Jagau
, “
Structure optimization of temporary anions
,”
J. Chem. Theory Comput.
14
,
3468
3478
(
2018
).
117.
Z.
Benda
and
T.-C.
Jagau
, “
Locating exceptional points on multidimensional complex-valued potential energy surfaces
,”
J. Phys. Chem. Lett.
9
,
6978
6984
(
2018
).
118.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).

Supplementary Material

You do not currently have access to this content.