Tunable interactions in colloids, induced by rotating electric or magnetic fields, provide a flexible and promising tool for self-assembly of soft materials, as well as for fundamental particle-resolved studies of phase transitions and other generic phenomena in condensed matter. In the case of two-dimensional systems and the in-plane rotating fields, the interactions are known to have a long-range (dipolar) attraction and an expressed three-body part at short distances, but still remain poorly understood. Here, we show that the interactions and polarization mechanisms governing the tunable interactions can be described, calculated, and analyzed in detail with the diagrammatic method we proposed. The diagrams yield a clear illustration of different polarization processes contributing to the Keesom, Debye, London, self, and external energies, classified in colloids similarly to intermolecular interactions. The real tunable interactions, obtained with the boundary element method, can be simply and accurately interpolated with the set of basis of the diagrams attributed to different physically clear polarization processes. Calculation of large-distance behavior and interpolation of the many-body interactions (and analysis of the leading mechanisms contributing to them) excellently illustrate that the diagrammatic method provides deep insights into the nature of tunable interactions. The method can be generalized for multicomponent systems, suspensions of particles with a composite structure and a complicated shape. The results provide significant advance in theoretical methods for detailed analysis of tunable interactions in colloids and, therefore, the method is of broad interest in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.

1.
A.
Ivlev
,
H.
Löwen
,
G.
Morfill
, and
C. P.
Royall
,
Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids
, Series in Soft Condensed Matter (
Word Scientific
,
Singapore
,
2012
).
2.
A.
Fernandez-Nieves
and
A. M.
Puertas
,
Fluids, Colloids, and Soft Materials: An Introduction to Soft Matter Physics
(
Wiley
,
2016
).
3.
H.
Löwen
,
Phys. Rep.
237
,
249
(
1994
).
4.
J.
Dobnikar
,
A.
Snezhko
, and
A.
Yethiraj
,
Soft Matter
9
,
3693
(
2013
).
5.
F.
Li
,
D. P.
Josephson
, and
A.
Stein
,
Angew. Chem., Int. Ed.
50
,
360
(
2010
).
6.
I. S.
Aranson
,
Phys.-Usp.
56
,
79
(
2013
).
7.
A.
Yethiraj
,
J.
Thijssen
,
A.
Wouterse
, and
A.
van Blaaderen
,
Adv. Mater.
16
,
596
(
2004
).
8.
X.
Tang
,
B.
Rupp
,
Y.
Yang
,
T. D.
Edwards
,
M. A.
Grover
, and
M. A.
Bevan
,
ACS Nano
10
,
6791
(
2016
).
9.
K. I.
Zaytsev
and
S. O.
Yurchenko
,
Appl. Phys. Lett.
105
,
051902
(
2014
).
10.
K. I.
Zaytsev
,
G. M.
Katyba
,
E. V.
Yakovlev
,
V. S.
Gorelik
, and
S. O.
Yurchenko
,
J. Appl. Phys.
115
,
213505
(
2014
).
11.
T.
Gong
,
D. T.
Wu
, and
D. W. M.
Marr
,
Langmuir
19
,
5967
(
2003
).
12.
S. O.
Yurchenko
,
K. I.
Zaytsev
,
E. A.
Gorbunov
,
E. V.
Yakovlev
,
A. K.
Zotov
,
V. M.
Masalov
,
G. A.
Emelchenko
, and
V. S.
Gorelik
,
J. Phys. D: Appl. Phys.
50
,
055105
(
2017
).
13.
O. D.
Velev
and
S.
Gupta
,
Adv. Mater.
21
,
1897
(
2009
).
14.
F.
Nan
,
F.
Han
,
N. F.
Scherer
, and
Z.
Yan
,
Adv. Mater.
30
,
1803238
(
2018
).
15.
D. V.
Lavrukhin
,
A. E.
Yachmenev
,
I. A.
Glinskiy
,
R. A.
Khabibullin
,
Y. G.
Goncharov
,
M.
Ryzhii
,
T.
Otsuji
,
I. E.
Spector
,
M.
Shur
,
M.
Skorobogatiy
,
K. I.
Zaytsev
, and
D. S.
Ponomarev
,
AIP Adv.
9
,
015112
(
2019
).
16.
A.
Stein
,
B. E.
Wilson
, and
S. G.
Rudisill
,
Chem. Soc. Rev.
42
,
2763
(
2013
).
17.
M.
Curti
,
J.
Schneider
,
D. W.
Bahnemann
, and
C. B.
Mendive
,
J. Phys. Chem. Lett.
6
,
3903
(
2015
).
18.
G.
Collins
,
E.
Armstrong
,
D.
McNulty
,
S.
O’Hanlon
,
H.
Geaney
, and
C.
O’Dwyer
,
Sci. Technol. Adv. Mater.
17
,
563
(
2016
).
19.
C.
O’Dwyer
,
Adv. Biomater.
28
,
5681
(
2016
).
20.
V.
Likodimos
,
Appl. Catal., B
230
,
269
(
2018
).
21.
S.
Fraden
,
A.
Hurd
, and
R.
Meyer
,
Phys. Rev. Lett.
63
,
2373
(
1989
).
22.
M.
Mittal
,
P. P.
Lele
,
E. W.
Kaler
, and
E. M.
Furst
,
J. Chem. Phys.
129
,
064513
(
2008
).
23.
B.
Bharti
,
F.
Kogler
,
C. K.
Hall
,
S. H. L.
Klapp
, and
O. D.
Velev
,
Soft Matter
12
,
7747
(
2016
).
24.
D. R. E.
Snoswell
,
C. L.
Bower
,
P.
Ivanov
,
M. J.
Cryan
,
J. G.
Rarity
, and
B.
Vincent
,
New J. Phys.
8
,
267
(
2006
).
25.
N.
Elsner
,
C. P.
Royall
,
B.
Vincent
, and
D. R. E.
Snoswell
,
J. Chem. Phys.
130
,
154901
(
2009
).
26.
N.
Li
,
H. D.
Newman
,
M.
Valera
,
I.
Saika-Voivod
, and
A.
Yethiraj
,
Soft Matter
6
,
876
(
2010
).
27.
J. J.
Juárez
and
M. A.
Bevan
,
Adv. Funct. Mater.
22
,
3833
(
2012
).
28.
J. J.
Juárez
,
S. E.
Feicht
, and
M. A.
Bevan
,
Soft Matter
8
,
94
(
2012
).
29.
M. E.
Leunissen
,
H. R.
Vutukuri
, and
A.
van Blaaderen
,
Adv. Mater.
21
,
3116
(
2009
).
30.
J. J.
Crassous
,
A. M.
Mihut
,
E.
Wernersson
,
P.
Pfleiderer
,
J.
Vermant
,
P.
Linse
, and
P.
Schurtenberger
,
Nat. Commun.
5
,
5516
(
2014
).
31.
E. V.
Yakovlev
,
K. A.
Komarov
,
K. I.
Zaytsev
,
N. P.
Kryuchkov
,
K. I.
Koshelev
,
A. K.
Zotov
,
D. A.
Shelestov
,
V. L.
Tolstoguzov
,
V. N.
Kurlov
,
A. V.
Ivlev
, and
S. O.
Yurchenko
,
Sci. Rep.
7
,
13727
(
2017
).
32.
P. V.
Ovcharov
,
N. P.
Kryuchkov
,
K. I.
Zaytsev
, and
S. O.
Yurchenko
,
J. Phys. Chem. C
121
,
26860
(
2017
).
33.
A.
Azari
,
J. J.
Crassous
,
A. M.
Mihut
,
E.
Bialik
,
P.
Schurtenberger
,
J.
Stenhammar
, and
P.
Linse
,
Langmuir
33
,
13834
(
2017
).
34.
Z. M.
Sherman
,
D.
Ghosh
, and
J. W.
Swan
,
Langmuir
34
,
7117
(
2018
).
35.
C.
Shih
,
J. J.
Molina
, and
R.
Yamamoto
,
Soft Matter
14
,
4520
(
2018
).
36.
K.
Müller
,
N.
Osterman
,
D.
Babič
,
C. N.
Likos
,
J.
Dobnikar
, and
A.
Nikoubashman
,
Langmuir
30
,
5088
(
2014
).
37.
N.
Osterman
,
I.
Poberaj
,
J.
Dobnikar
,
D.
Frenkel
,
P.
Ziherl
, and
D.
Babić
,
Phys. Rev. Lett.
103
,
228301
(
2009
).
38.
D.
Du
,
D.
Li
,
M.
Thakur
, and
S. L.
Biswal
,
Soft Matter
9
,
6867
(
2013
).
39.
J.
Byrom
and
S. L.
Biswal
,
Soft Matter
9
,
9167
(
2013
).
40.
I.
Martchenko
,
J. J.
Crassous
,
A. M.
Mihut
,
E.
Bialik
,
A. M.
Hirt
,
C.
Rufier
,
A.
Menzel
,
H.
Dietsch
,
P.
Linse
, and
P.
Schurtenberger
,
Soft Matter
12
,
8755
(
2016
).
41.
A. T.
Pham
,
Y.
Zhuang
,
P.
Detwiler
,
J. E. S.
Socolar
,
P.
Charbonneau
, and
B. B.
Yellen
,
Phys. Rev. E
95
,
052607
(
2017
).
42.
D.
Du
,
F.
Toffoletto
, and
S. L.
Biswal
,
Phys. Rev. E
89
,
043306
(
2014
).
43.
D.
Du
and
S. L.
Biswal
,
Phys. Rev. E
90
,
033310
(
2014
).
44.
A.
Weddemann
,
F.
Wittbracht
,
B.
Eickenberg
, and
A.
Hütten
,
Langmuir
26
,
19225
(
2010
).
45.
A. C. H.
Coughlan
and
M. A.
Bevan
,
J. Chem. Phys.
147
,
074903
(
2017
).
46.
J. E.
Martin
and
A.
Snezhko
,
Rep. Prog. Phys.
76
,
126601
(
2013
).
47.
S. H.
Klapp
,
Curr. Opin. Colloid Interface Sci.
21
,
76
(
2016
).
48.
B. W.
Kwaadgras
,
R.
van Roij
, and
M.
Dijkstra
,
J. Chem. Phys.
140
,
154901
(
2014
).
49.
K.
Zahn
,
R.
Lenke
, and
G.
Maret
,
Phys. Rev. Lett.
82
,
2721
(
1999
).
50.
P.
Tierno
,
Phys. Chem. Chem. Phys.
16
,
23515
(
2014
).
51.
A. M.
Menzel
,
Phys. Rep.
554
,
1
(
2015
).
52.
B.
Li
,
D.
Zhou
, and
Y.
Han
,
Nat. Rev. Mater.
1
,
15011
(
2016
).
53.
A. M.
Alsayed
,
Science
309
,
1207
(
2005
).
54.
T.
Palberg
,
J. Phys.: Condens. Matter
26
,
333101
(
2014
).
55.
E.
Allahyarov
,
K.
Sandomirski
,
S.
Egelhaaf
, and
H.
Löwen
,
Nat. Commun.
6
,
8110
(
2015
).
56.
Z.
Wang
,
F.
Wang
,
Y.
Peng
, and
Y.
Han
,
Nat. Commun.
6
,
6942
(
2015
).
57.
C. P.
Royall
,
M. E.
Leunissen
,
A.-P.
Hynninen
,
M.
Dijkstra
, and
A.
van Blaaderen
,
J. Chem. Phys.
124
,
244706
(
2006
).
58.
J. C.
Everts
,
N.
Boon
, and
R.
van Roij
,
Phys. Chem. Chem. Phys.
18
,
5211
(
2016
).
59.
J.
Taffs
,
S. R.
Williams
,
H.
Tanaka
, and
C. P.
Royall
,
Soft Matter
9
,
297
(
2013
).
60.
J.
Sprakel
,
A.
Zaccone
,
F.
Spaepen
,
P.
Schall
, and
D. A.
Weitz
,
Phys. Rev. Lett.
118
,
088003
(
2017
).
61.
A.
Kozina
,
P.
Díaz-Leyva
,
T.
Palberg
, and
E.
Bartsch
,
Soft Matter
10
,
9523
(
2014
).
62.
D.
Paloli
,
P. S.
Mohanty
,
J. J.
Crassous
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
Soft Matter
9
,
3000
(
2013
).
63.
J.-M.
Meijer
and
J. J.
Crassous
,
Small
14
,
1802049
(
2018
).
64.
V. N.
Ryzhov
,
E. E.
Tareyeva
,
Y. D.
Fomin
, and
E. N.
Tsiok
,
Phys.-Usp.
60
,
857
(
2017
).
65.
M. E.
Leunissen
,
C. G.
Christova
,
A.-P.
Hynninen
,
C. P.
Royall
,
A. I.
Campbell
,
A.
Imhof
,
M.
Dijkstra
,
R.
van Roij
, and
A.
van Blaaderen
,
Nature
437
,
235
(
2005
).
66.
K.
Miszta
,
J.
de Graaf
,
G.
Bertoni
,
D.
Dorfs
,
R.
Brescia
,
S.
Marras
,
L.
Ceseracciu
,
R.
Cingolani
,
R.
van Roij
,
M.
Dijkstra
, and
L.
Manna
,
Nat. Mater.
10
,
872
(
2011
).
67.
M.
Chaudhuri
,
E.
Allahyarov
,
H.
Löwen
,
S. U.
Egelhaaf
, and
D. A.
Weitz
,
Phys. Rev. Lett.
119
,
128001
(
2017
).
68.
V. J.
Anderson
and
H. N. W.
Lekkerkerker
,
Nature
416
,
811
(
2002
).
69.
C. P.
Royall
,
D. G. A. L.
Aarts
, and
H.
Tanaka
,
Nat. Phys.
3
,
636
(
2007
).
70.
I.
Zhang
,
C. P.
Royall
,
M. A.
Faers
, and
P.
Bartlett
,
Soft Matter
9
,
2076
(
2013
).
71.
N. P.
Kryuchkov
,
F.
Smallenburg
,
A. V.
Ivlev
,
S. O.
Yurchenko
, and
H.
Löwen
,
J. Chem. Phys.
150
,
104903
(
2019
).
72.
S.
Jäger
and
S. H. L.
Klapp
,
Soft Matter
7
,
6606
(
2011
).
73.
J. E.
Martin
,
E.
Venturini
,
G. L.
Gulley
, and
J.
Williamson
,
Phys. Rev. E
69
,
021508
(
2004
).
74.
J. E.
Martin
,
R. A.
Anderson
, and
R. L.
Williamson
,
J. Chem. Phys.
118
,
1557
(
2003
).
75.
J.
Mikhael
,
J.
Roth
,
L.
Helden
, and
C.
Bechinger
,
Nature
454
,
501
(
2008
).
76.
N. P.
Kryuchkov
,
S. O.
Yurchenko
,
Y. D.
Fomin
,
E. N.
Tsiok
, and
V. N.
Ryzhov
,
Soft Matter
14
,
2152
(
2018
).
77.
S. O.
Yurchenko
,
J. Chem. Phys.
140
,
134502
(
2014
).
78.
S. O.
Yurchenko
,
N. P.
Kryuchkov
, and
A. V.
Ivlev
,
J. Chem. Phys.
143
,
034506
(
2015
).
79.
S. O.
Yurchenko
,
N. P.
Kryuchkov
, and
A. V.
Ivlev
,
J. Phys.: Condens. Matter
28
,
235401
(
2016
).
80.
E. V.
Yakovlev
,
M.
Chaudhuri
,
N. P.
Kryuchkov
,
P. V.
Ovcharov
,
A. V.
Sapelkin
, and
S. O.
Yurchenko
,
J. Chem. Phys.
151
,
114502
(
2019
).
81.
C. P.
Royall
and
S. R.
Williams
,
Phys. Rep.
560
,
1
(
2015
).
82.
F.
Turci
,
C. P.
Royall
, and
T.
Speck
,
Phys. Rev. X
7
,
031028
(
2017
).
83.
C. P.
Royall
,
S. R.
Williams
, and
H.
Tanaka
,
J. Chem. Phys.
148
,
044501
(
2018
).
84.
J. E.
Hallett
,
F.
Turci
, and
C. P.
Royall
,
Nat. Commun.
9
,
3272
(
2018
).
85.
A.
Zaccone
,
J. J.
Crassous
, and
M.
Ballauff
,
J. Chem. Phys.
138
,
104908
(
2013
).
86.
D.
Richard
,
J.
Hallett
,
T.
Speck
, and
C. P.
Royall
,
Soft Matter
14
,
5554
(
2018
).
87.
F.
Ebert
,
P.
Keim
, and
G.
Maret
,
Eur. Phys. J. E
26
,
161
(
2008
).
88.
E.
Zaccarelli
,
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
89.
S. O.
Lumsdon
,
E. W.
Kaler
, and
O. D.
Velev
,
Langmuir
20
,
2108
(
2004
).
90.
I.
Torres-Díaz
,
B.
Rupp
,
Y.
Yang
, and
M. A.
Bevan
,
Soft Matter
14
,
934
(
2018
).
91.
K. A.
Komarov
,
N. P.
Kryuchkov
, and
S. O.
Yurchenko
,
Soft Matter
14
,
9657
(
2018
).
92.
J. E.
Martin
,
R. A.
Anderson
, and
C. P.
Tigges
,
J. Chem. Phys.
108
,
7887
(
1998
).
93.
J. E.
Martin
,
R. A.
Anderson
, and
C. P.
Tigges
,
J. Chem. Phys.
110
,
4854
(
1999
).
94.
J. E.
Martin
and
R. A.
Anderson
,
J. Chem. Phys.
111
,
4273
(
1999
).
95.
J. P.
Bardhan
,
M. G.
Knepley
, and
M.
Anitescu
,
J. Chem. Phys.
130
,
104108
(
2009
).
96.
J. P.
Bardhan
,
J. Chem. Phys.
130
,
094102
(
2009
).
97.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
).
98.
D. M.
Chipman
,
J. Chem. Phys.
112
,
5558
(
2000
).
99.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
100.
Y. N.
Vorobjev
,
J. A.
Grant
, and
H. A.
Scheraga
,
J. Am. Chem. Soc.
114
,
3189
(
1992
).
101.
B. J.
Yoon
and
A. M.
Lenhoff
,
J. Comput. Chem.
11
,
1080
(
1990
).
102.
K.
Barros
and
E.
Luijten
,
Phys. Rev. Lett.
113
,
017801
(
2014
).
103.
K.
Barros
,
D.
Sinkovits
, and
E.
Luijten
,
J. Chem. Phys.
140
,
064903
(
2014
).
104.
I.
Tamm
,
Fundamentals of the Theory of Electricity
(
Mir
,
1979
).
105.
H.
Margenau
and
N. R.
Kestner
,
Theory of Intermolecular Forces
(
Pergamon Press Oxford
,
New York
,
1969
).
106.
I.
Kaplan
,
Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials
, Wiley Series in Theoretical Chemistry (
Wiley
,
2006
).
107.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
108.
North Atlantic Treaty Organization. Pure Science Bureau and Orta Doğu Teknik Üniversitesi,
Modern Quantum Chemistry: Interactions
, Modern Quantum Chemistry: Istanbul Lectures, edited by
O.
Sinanoğlu
(
Academic Press
,
1965
).
109.
S.
Paladugu
,
A.
Callegari
,
Y.
Tuna
,
L.
Barth
,
S.
Dietrich
,
A.
Gambassi
, and
G.
Volpe
,
Nat. Commun.
7
,
11403
(
2016
).
110.
H.
Hobrecht
and
A.
Hucht
,
Phys. Rev. E
92
,
042315
(
2015
).
111.
T. G.
Mattos
,
L.
Harnau
, and
S.
Dietrich
,
Phys. Rev. E
91
,
042304
(
2015
).
112.
M.
Brunner
,
J.
Dobnikar
,
H.-H.
von Grünberg
, and
C.
Bechinger
,
Phys. Rev. Lett.
92
,
078301
(
2004
).
113.
I. M.
Kulić
and
M. L.
Kulić
,
Phys. Rev. E
90
,
062313
(
2014
).
114.
E.
Nazockdast
and
J. F.
Morris
,
J. Fluid Mech.
713
,
420
(
2012
).
115.
E.
Nazockdast
and
J. F.
Morris
,
Phys. Fluids
25
,
070601
(
2013
).
116.
L.
Banetta
and
A.
Zaccone
,
Phys. Rev. E
99
,
052606
(
2019
).
You do not currently have access to this content.