Balanced charge transport is particularly important for transistors. Hence, ambipolar organic semiconductors with comparable transport capabilities for both positive and negative charges are highly sought-after. Here, we report detailed insights into the electronic structure of PNDITBT, which is an alternating copolymer of naphthalene diimide (NDI), thiophene, benzothiodiazole (B), and thiophene (T) units, as gained by time-resolved electron paramagnetic resonance (TREPR) spectroscopy combined with quantum-chemical calculations. The results are compared to those obtained for PNDIT2 and PCDTBT, which are derivatives without B and NDI acceptor units, respectively. These two polymers show dominant n- and p-channel behavior in organic field-effect transistors. The TBT moiety clearly dominates the electronic structure of PNDITBT, although less so than in PCDTBT. Furthermore, the triplet exciton most probably delocalizes along the backbone, exhibits a highly homogeneous environment, and planarizes the polymer backbone. Obtaining the zero-field splitting tensors of these triplet states by means of quantum-chemical calculations reveals the triplet energy sublevel associated with the molecular axis parallel to the backbone to be preferentially populated, while the one perpendicular to the aromatic plane is not populated at all, consistent with the spin-density distribution. PNDITBT consisting of two acceptors (NDI and B) has a complex electronic structure, as evident from the two charge-transfer bands in its absorption spectrum. TREPR spectroscopy provides a detailed insight on a molecular level not available by and complementing other methods.

1.
G. E.
Moore
, “
Cramming more components onto integrated circuits
,”
Electronics
38
,
114
117
(
1965
).
2.
S. R.
Forrest
, “
The path to ubiquitious and low-cost organic electronic appliances on plastic
,”
Nature
428
,
911
918
(
2004
).
3.
I.
McCulloch
, “
Rolling out organic electronics
,”
Nat. Mater.
4
,
583
584
(
2005
).
4.
A.
Coskun
,
J. M.
Spruell
,
G.
Barin
,
W. R.
Dichtel
,
A. H.
Flood
,
Y. Y.
Botros
, and
J. F.
Stoddart
, “
High hopes: Can molecular electronics realise its potential?
,”
Chem. Soc. Rev.
41
,
4827
4859
(
2012
).
5.
A. C.
Arias
,
J. D.
MacKenzie
,
I.
McCulloch
,
J.
Rivnay
, and
A.
Salleo
, “
Materials and applications for large area electronics: Solution-based approaches
,”
Chem. Rev.
110
,
3
24
(
2010
).
6.
J.
Lewis
, “
Material challenge for flexible organic devices
,”
Mater. Today
9
,
38
45
(
2006
).
7.
S.
Logothetidis
, “
Flexible organic electronic devices: Materials, process and applications
,”
Mater. Sci. Eng.: B
152
,
96
104
(
2008
).
8.
J. A.
Rogers
,
T.
Someya
, and
Y.
Huang
, “
Materials and mechanics for stretchable electronics
,”
Science
327
,
1603
1607
(
2010
).
9.
H.
Ling
,
S.
Liu
,
Z.
Zheng
, and
F.
Yan
, “
Organic flexible electronics
,”
Small Methods
2
,
1800070
(
2018
).
10.
M.
Berggren
,
D.
Nilsson
, and
N. D.
Robinson
, “
Organic materials for printed electronics
,”
Nat. Mater.
6
,
3
5
(
2007
).
11.
Z. B.
Henson
,
K.
Müllen
, and
G. C.
Bazan
, “
Design strategies for organic semiconductors beyond the molecular formula
,”
Nat. Chem.
4
,
699
704
(
2012
).
12.
P.-O.
Morin
,
T.
Bura
, and
M.
Leclerc
, “
Realizing the full potential of conjugated polymers: Innovation in polymer synthesis
,”
Mater. Horiz.
3
,
11
20
(
2016
).
13.
D. L.
Meyer
,
R.
Matsidik
,
M.
Sommer
, and
T.
Biskup
, “
Electronic structure trumps planarity: Unexpected narrow exciton delocalisation in PNDIT2 revealed by time-resolved EPR spectroscopy
,”
Adv. Electron. Mater.
4
,
1700385
(
2018
).
14.
C.
Matt
,
D. L.
Meyer
,
F.
Lombeck
,
M.
Sommer
, and
T.
Biskup
, “
TBT entirely dominates the electronic structure of the conjugated copolymer PCDTBT: Insights from time-resolved electron paramagnetic resonance spectroscopy
,”
Macromolecules
51
,
4341
4349
(
2018
).
15.
L.
Lu
,
T.
Zheng
,
Q.
Wu
,
A. M.
Schneider
,
D.
Zhao
, and
L.
Yu
, “
Recent advances in bulk heterojunction polymer solar cells
,”
Chem. Rev.
115
,
12666
12731
(
2015
).
16.
N.
Yeh
and
P.
Yeh
, “
Organic solar cells: Their developments and potentials
,”
J. Renewable Sustainable Energy
21
,
421
431
(
2013
).
17.
C.
Sekine
,
Y.
Tsubata
,
T.
Yamada
,
M.
Kitano
, and
S.
Doi
, “
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics
,”
Sci. Technol. Adv. Mater.
15
,
034203
(
2014
).
18.
A.
Facchetti
, “
Seminconductors for organic transistors
,”
Mater. Today
10
,
28
37
(
2007
).
19.
J. A.
Rogers
and
Z.
Bao
, “
Printed plastic electronics and paperlike displays
,”
J. Polym. Sci., Part A: Polym. Chem.
40
,
3327
3334
(
2002
).
20.
H.
Klauk
, “
Organic thin-film transistors
,”
Chem. Soc. Rev.
39
,
2643
2666
(
2010
).
21.
B.
Crone
,
A.
Dodabalapur
,
Y.-Y.
Lin
,
R. W.
Filas
,
Z.
Bao
,
A.
LaDuca
,
R.
Sarpeshkar
,
H. E.
Katz
, and
W.
Li
, “
Large-scale complementary integrated circuits based on organic transistors
,”
Nature
403
,
521
523
(
2000
).
22.
H.
Klauk
,
U.
Zschieschang
,
J.
Pflaum
, and
M.
Halik
, “
Ultralow-power organic complementary circuits
,”
Nature
445
,
745
748
(
2007
).
23.
T.
Sekitani
and
T.
Someya
, “
Human-friendly organic integrated circuits
,”
Mater. Today
14
,
398
407
(
2011
).
24.
M.
Stoppa
and
A.
Chiolerio
, “
Wearable electronics and smart textiles: A critical review
,”
Sensors
14
,
11957
11992
(
2014
).
25.
J.
Zaumseil
and
H.
Sirringhaus
, “
Electron and ambipolar transport in organic field-effect transistors
,”
Chem. Rev.
107
,
1296
1323
(
2007
).
26.
C. B.
Nielsen
,
M.
Turbiez
, and
I.
McCulloch
, “
Recent advances in the development of semiconducting DPP-containing polymers for transistor applications
,”
Adv. Mater.
25
,
1859
1880
(
2013
).
27.
A. J.
Kronemeijer
,
E.
Gili
,
M.
Shahid
,
J.
Rivnay
,
A.
Salleo
,
M.
Heeney
, and
H.
Sirringhaus
, “
A selenophene-based low-bandgap donor–acceptor polymer leading to fast ambipolar logic
,”
Adv. Mater.
24
,
1558
1565
(
2012
).
28.
K. H.
Hendriks
,
G. H. L.
Heitges
,
V. S.
Gevaerts
,
M. M.
Wienk
, and
R. A. J.
Janssen
,
Angew. Chem., Int. Ed.
52
,
8341
8344
(
2013
).
29.
M.
Sommer
, “
Conjugated polymers based on naphthalene diimide for organic electronics
,”
J. Mater. Chem. C
2
,
3088
3098
(
2014
).
30.
C.
Gu
,
W.
Hu
,
J.
Yao
, and
H.
Fu
, “
Naphthalenediimide-benzothiadiazole copolymer semiconductors: Rational molecular design for air-stable ambipolar charge transport
,”
Chem. Mater.
25
,
2178
2183
(
2013
).
31.
F.
Liu
,
H.
Li
,
C.
Gu
, and
H.
Fu
, “
Naphthalene diimide and benzothiadiazole copolymer acceptor for all-polymer solar cells with improved open-circuit voltage and morphology
,”
RSC Adv.
5
,
92151
92158
(
2015
).
32.
H.
Yan
,
Z.
Chen
,
Y.
Zheng
,
C.
Newman
,
J. R.
Quinn
,
F.
Dötz
,
M.
Kastler
, and
A.
Facchetti
, “
A high-mobility electron-transporting polymer for printed transistors
,”
Nature
457
,
679
686
(
2009
).
33.
R.
Matsidik
,
H.
Komber
,
A.
Luzio
,
M.
Caironi
, and
M.
Sommer
, “
Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation
,”
J. Am. Chem. Soc.
137
,
6705
6711
(
2015
).
34.
N.
Blouin
,
A.
Michaud
, and
M.
Leclerc
, “
A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells
,”
Adv. Mater.
19
,
2295
2300
(
2007
).
35.
N.
Blouin
,
A.
Michaud
,
D.
Gendron
,
S.
Wakim
,
E.
Blair
,
R.
Neagu-Plesu
,
M.
Belletête
,
G.
Durocher
,
Y.
Tao
, and
M.
Leclerc
, “
Toward a rational design of poly(2,7-carbazole) derivatives for solar cells
,”
J. Am. Chem. Soc.
130
,
732
742
(
2008
).
36.
S.
Cho
,
J. H.
Seo
,
S. H.
Park
,
S.
Beaupré
,
M.
Leclerc
, and
A. J.
Heeger
, “
A thermally stable semiconducting polymer
,”
Adv. Mater.
22
,
1253
1257
(
2010
).
37.
Y.
Sun
,
C. J.
Takacs
,
S. R.
Cowan
,
J. H.
Seo
,
X.
Gong
,
A.
Roy
, and
A. J.
Heeger
, “
Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer
,”
Adv. Mater.
23
,
2226
2230
(
2011
).
38.
C. H.
Peters
,
I. T.
Sachs-Quintana
,
J. P.
Kastrop
,
S.
Beaupré
,
M.
Leclerc
, and
M. D.
McGehee
, “
High efficiency polymer solar cells with long operating lifetimes
,”
Adv. Energy Mater.
1
,
491
494
(
2011
).
39.
J.
Kong
,
S.
Song
,
M.
Yoo
,
G. Y.
Lee
,
O.
Kwon
,
J. K.
Park
,
H.
Back
,
G.
Kim
,
S. H.
Lee
,
H.
Suh
, and
K.
Lee
, “
Long-term stable polymer solar cells with significantly reduced burn-in loss
,”
Nat. Commun.
5
,
5688
(
2014
).
40.
S.
Beaupré
and
M.
Leclerc
, “
PCDTBT: En route for low cost plastic solar cells
,”
J. Mater. Chem. A
1
,
11097
11105
(
2013
).
41.
M. D.
Forbes
,
L. E.
Jarocha
,
S.
Sim
, and
V. F.
Tarasov
, “
Time-resolved electron paramagnetic resonance spectroscopy: History, technique, and application to supramolecular and macromolecular chemistry
,”
Adv. Phys. Org. Chem.
47
,
1
83
(
2014
).
42.
T.
Biskup
, “
Structure–function relationship of organic semiconductors: Detailed insights from time-resolved EPR spectroscopy
,”
Front. Chem.
7
,
10
(
2019
).
43.
R.
Matsidik
,
H.
Komber
, and
M.
Sommer
, “
Rational use of aromatic solvents for direct arylation polycondensation: C–H reactivity versus solvent quality
,”
ACS Macro Lett.
4
,
1346
1350
(
2015
).
44.
T.
Biskup
, “
Time-resolved EPR of radical pair intermediates in cryptochromes
,”
Mol. Phys.
111
,
3698
3703
(
2013
).
45.
S.
Stoll
and
A.
Schweiger
, “
EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
,”
J. Magn. Reson.
178
,
42
55
(
2006
).
46.
D. L.
Meyer
,
F.
Lombeck
,
S.
Huettner
,
M.
Sommer
, and
T.
Biskup
, “
Direct S0 → T excitation of a conjugated polymer repeat unit: Unusual spin-forbidden transitions probed by time-resolved electron paramagnetic resonance spectroscopy
,”
J. Phys. Chem. Lett.
8
,
1677
1682
(
2017
).
47.
F.
Neese
, “
The ORCA program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
48.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
49.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
50.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
, “
A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements
,”
J. Chem. Phys.
89
,
2193
2218
(
1988
).
51.
G. A.
Petersson
and
M. A.
Al-Laham
, “
A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms
,”
J. Chem. Phys.
94
,
6081
6090
(
1991
).
52.
V.
Barone
, “
Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods
,” in
Recent Advances in Density Functional Methods (Part I)
, Recent Advances in Computational Chemistry Vol. 1, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Chap. 8, pp.
287
334
.
53.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
54.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
55.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
,
17
(
2012
).
56.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
, “
UCSF Chimera—A visualization system for exploratory research and analysis
,”
J. Comput. Chem.
25
,
1605
1612
(
2004
).
57.
N.
Banerji
,
E.
Gagnon
,
P.-Y.
Morgantini
,
S.
Valouch
,
A. R.
Mohebbi
,
J.-H.
Seo
,
M.
Leclerc
, and
A. J.
Heeger
, “
Breaking down the problem: Optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks
,”
J. Phys. Chem. C
116
,
11456
11469
(
2012
).
58.
D. L.
Meyer
,
R.
Matsidik
,
S.
Huettner
,
M.
Sommer
, and
T.
Biskup
, “
Solvent-mediated aggregate formation of PNDIT2: Decreasing the available conformational subspace by introducing locally highly ordered domains
,”
Phys. Chem. Chem. Phys.
20
,
2716
2723
(
2018
).
59.
O. O.
Adegoke
,
I. H.
Jung
,
M.
Orr
,
L.
Yu
, and
T.
Goodson
 III
, “
Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications
,”
J. Am. Chem. Soc.
137
,
5759
5769
(
2015
).
60.
R.
Steyrleuthner
,
M.
Schubert
,
I.
Howard
,
B.
Klaumünzer
,
K.
Schilling
,
Z.
Chen
,
P.
Saalfrank
,
F.
Laquai
,
A.
Facchetti
, and
D.
Neher
, “
Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology
,”
J. Am. Chem. Soc.
134
,
18303
18317
(
2012
).
61.
M.
Bennati
,
K.
Németh
,
P. R.
Surján
, and
M.
Mehring
, “
Zero-field-splitting and π-electron spin densities in the lowest excited triplet state of oligothiophenes
,”
J. Chem. Phys.
105
,
4441
4447
(
1996
).
62.
D. L.
Meyer
,
R.
Matsidik
,
D.
Fazzi
,
M.
Sommer
, and
T.
Biskup
, “
Probing exciton delocalization in organic semiconductors: Insight from time-resolved electron paramagnetic resonance and magnetophotoselection experiments
,”
J. Phys. Chem. Lett.
9
,
7026
7031
(
2018
).
63.
D. L.
Meyer
,
N.
Schmidt-Meinzer
,
C.
Matt
,
S.
Rein
,
F.
Lombeck
,
M.
Sommer
, and
T.
Biskup
, “
Side-chain engineering of conjugated polymers: Distinguishing its impact on film morphology and electronic structure
,”
J. Phys. Chem. C
123
,
20071
20083
(
2019
).
64.
C.
Matt
,
F.
Lombeck
,
M.
Sommer
, and
T.
Biskup
, “
Impact of side chains of conjugated polymers on electronic structure: A case study
,”
Polymers
11
,
870
(
2019
).
65.
S.
Sinnecker
and
F.
Neese
, “
Spin–spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicalssa density functional and ab initio study
,”
J. Phys. Chem. A
110
,
12267
12275
(
2006
).
66.
A.
Akimov
,
A.
Masitov
,
D.
Korchagin
,
S.
Chapyshev
,
E.
Misochko
, and
A.
Savitsky
, “
W-band EPR studies of high-spin nitrenes with large spin-orbit contribution to zero-field splitting
,”
J. Chem. Phys.
143
,
084313
(
2015
).

Supplementary Material

You do not currently have access to this content.