Platinum-based heterogeneous catalysts are mostly used in various commercial chemical processes because of their high catalytic activity, influenced by the metal/oxide interaction. To design rational catalysts with high performance, it is crucial to understand the relationship between the metal–oxide interface and the reaction pathway. Here, we investigate the role of oxygen defect sites in the reaction mechanism for CO oxidation using Pt nanoparticles supported on mesoporous TiO2 catalysts with oxygen defects. We show an intrinsic correlation between the catalytic reactivity and the local properties of titania with oxygen defects (i.e., Ti3+ sites). In situ infrared spectroscopy observations of the Pt/mesoporous TiO2−x catalyst indicate that an oxygen molecule bond can be activated at the perimeter between the Pt and an oxygen vacancy in TiO2 by neighboring CO molecules on the Pt surface before CO oxidation begins. The proposed reaction pathways for O2 activation at the Pt/TiO2−x interface based on density functional theory confirm our experimental findings. We suggest that this provides valuable insight into the intrinsic origin of the metal/support interaction influenced by the presence of oxygen vacancies, which clarifies the pivotal role played by the support.

1.
M. S.
Chen
,
Y.
Cai
,
Z.
Yan
,
K. K.
Gath
,
S.
Axnanda
, and
D. W.
Goodman
, “
Highly active surfaces for CO oxidation on Rh, Pd, and Pt
,”
Surf. Sci.
601
,
5326
5331
(
2007
).
2.
G.
Ertl
, “
Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces
,”
Science
254
,
1750
1755
(
1991
).
3.
H.
Song
,
R. M.
Rioux
,
J. D.
Hoefelmeyer
,
R.
Komor
,
K.
Niesz
,
M.
Grass
,
P.
Yang
, and
G. A.
Somorjai
, “
Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties
,”
J. Am. Chem. Soc.
128
,
3027
3037
(
2006
).
4.
M.
Haruta
,
N.
Yamada
,
T.
Kobayashi
, and
S.
Iijima
, “
Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide
,”
J. Catal.
115
,
301
309
(
1989
).
5.
J. Y.
Park
,
L. R.
Baker
, and
G. A.
Somorjai
, “
Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions
,”
Chem. Rev.
115
,
2781
2817
(
2015
).
6.
G. A.
Somorjai
and
J. Y.
Park
, “
Molecular factors of catalytic selectivity
,”
Angew. Chem., Int. Ed.
47
,
9212
9228
(
2008
).
7.
S.
Tauster
and
S.
Fung
, “
Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB
,”
J. Catal.
55
,
29
35
(
1978
).
8.
K.
An
,
S.
Alayoglu
,
N.
Musselwhite
,
S.
Plamthottam
,
G.
Melaet
,
A. E.
Lindeman
, and
G. A.
Somorjai
, “
Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles
,”
J. Am. Chem. Soc.
135
,
16689
16696
(
2013
).
9.
S. M.
Kim
,
K.
Qadir
,
B.
Seo
,
H. Y.
Jeong
,
S. H.
Joo
,
O.
Terasaki
, and
J. Y.
Park
, “
Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation
,”
Catal. Lett.
143
,
1153
1161
(
2013
).
10.
Z.-Y.
Pu
,
X.-S.
Liu
,
A.-P.
Jia
,
Y.-L.
Xie
,
J.-Q.
Lu
, and
M.-F.
Luo
, “
Enhanced activity for CO oxidation over Pr-and Cu-doped CeO2 catalysts: Effect of oxygen vacancies
,”
J. Phys. Chem. C
112
,
15045
15051
(
2008
).
11.
I.
Langmuir
, “
The mechanism of the catalytic action of platinum in the reactions 2Co+O2=2Co2 and 2H2+O2=2H2O
,”
Trans. Faraday Soc.
17
,
621
654
(
1922
).
12.
S.
Polarz
,
J.
Strunk
,
V.
Ischenko
,
M. W.
Van den Berg
,
O.
Hinrichsen
,
M.
Muhler
, and
M.
Driess
, “
On the role of oxygen defects in the catalytic performance of zinc oxide
,”
Angew. Chem., Int. Ed.
45
,
2965
2969
(
2006
).
13.
D.
Widmann
and
R.
Behm
, “
Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts
,”
Acc. Chem. Res.
47
,
740
749
(
2014
).
14.
I. X.
Green
,
W.
Tang
,
M.
Neurock
, and
J. T.
Yates
, Jr.
, “
Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites
,”
Acc. Chem. Res.
47
,
805
815
(
2013
).
15.
A.
Linsebigler
and
G.
Lu
, “
Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results
,”
Chem. Rev.
95
,
735
758
(
1995
).
16.
M.
Menetrey
,
A.
Markovits
, and
C.
Minot
, “
Reactivity of a reduced metal oxide surface: Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110)
,”
Surf. Sci.
524
,
49
62
(
2003
).
17.
N.
Li
,
Q.-Y.
Chen
,
L.-F.
Luo
,
W.-X.
Huang
,
M.-F.
Luo
,
G.-S.
Hu
, and
J.-Q.
Lu
, “
Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts
,”
Appl. Catal., B
142
,
523
532
(
2013
).
18.
I. X.
Green
,
W.
Tang
,
M.
McEntee
,
M.
Neurock
, and
J. T.
Yates
, Jr.
, “
Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen
,”
J. Am. Chem. Soc.
134
,
12717
12723
(
2012
).
19.
I. X.
Green
,
W.
Tang
,
M.
Neurock
, and
J. T.
Yates
, “
Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst
,”
Science
333
,
736
739
(
2011
).
20.
D.
Pillay
and
G. S.
Hwang
, “
O2-coverage-dependent CO oxidation on reduced TiO2(110): A first principles study
,”
J. Chem. Phys.
125
,
144706
(
2006
).
21.
D. C.
Sorescu
,
J.
Lee
,
W. A.
Al-Saidi
, and
K. D.
Jordan
, “
CO2 adsorption on TiO2(110) rutile: Insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments
,”
J. Chem. Phys.
134
,
104707
(
2011
).
22.
B.
Yoon
,
H.
Häkkinen
,
U.
Landman
,
A. S.
Wörz
,
J.-M.
Antonietti
,
S.
Abbet
,
K.
Judai
, and
U.
Heiz
, “
Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO
,”
Science
307
,
403
407
(
2005
).
23.
G.
Pacchioni
, “
Oxygen vacancy: The invisible agent on oxide surfaces
,”
ChemPhysChem
4
,
1041
1047
(
2003
).
24.
R.
Schaub
,
P.
Thostrup
,
N.
Lopez
,
E.
Lægsgaard
,
I.
Stensgaard
,
J. K.
Nørskov
, and
F.
Besenbacher
, “
Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)
,”
Phys. Rev. Lett.
87
,
266104
(
2001
).
25.
T. L.
Thompson
and
J. T.
Yates
, “
TiO2-based photocatalysis: Surface defects, oxygen and charge transfer
,”
Top. Catal.
35
,
197
210
(
2005
).
26.
Z.
Zhang
,
O.
Bondarchuk
,
J. M.
White
,
B. D.
Kay
, and
Z.
Dohnalek
, “
Imaging adsorbate O–H bond cleavage: Methanol on TiO2(110)
,”
J. Am. Chem. Soc.
128
,
4198
4199
(
2006
).
27.
U.
Diebold
, “
The surface science of titanium dioxide
,”
Surf. Sci. Rep.
48
,
53
229
(
2003
).
28.
S.
Wendt
,
P. T.
Sprunger
,
E.
Lira
,
G. K. H.
Madsen
,
Z.
Li
,
J.
Hansen
,
J.
Matthiesen
,
A.
Blekinge-Rasmussen
,
E.
Laegsgaard
,
B.
Hammer
, and
F.
Besenbacher
, “
The role of interstitial sites in the Ti3d defect state in the band gap of titania
,”
Science
320
,
1755
1759
(
2008
).
29.
I.
Brookes
,
C.
Muryn
, and
G.
Thornton
, “
Imaging water dissociation on TiO2(110)
,”
Phys. Rev. Lett.
87
,
266103
(
2001
).
30.
C.
Jo
,
Y.
Seo
,
K.
Cho
,
J.
Kim
,
H. S.
Shin
,
M.
Lee
,
J. C.
Kim
,
S. O.
Kim
,
J. Y.
Lee
,
H.
Ihee
, and
R.
Ryoo
, “
Random-graft polymer-directed synthesis of inorganic mesostructures with ultrathin frameworks
,”
Angew. Chem., Int. Ed.
53
,
5117
5121
(
2014
).
31.
S.
Xia
,
Z.
Fu
,
B.
Huang
,
J.
Xu
, and
Z.
Fan
, “
Ethylene/1-hexene copolymerization with MgCl2-supported Ziegler–Natta catalysts containing aryloxy ligands. Part I: Catalysts prepared by immobilizing TiCl3 (OAr) onto MgCl2 in batch reaction
,”
J. Mol. Catal.
355
,
161
167
(
2012
).
32.
S.
Zhang
,
Y.
Shao
,
G.
Yin
, and
Y.
Lin
, “
Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly (diallyldimethylammonium chloride)
,”
J. Mater. Chem.
19
,
7995
8001
(
2009
).
33.
H. Y.
Kim
,
M. S.
Hybertsen
, and
P.
Liu
, “
Controlled growth of ceria nanoarrays on anatase titania powder: A bottom-up physical picture
,”
Nano Lett.
17
,
348
354
(
2017
).
34.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
35.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
36.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
37.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
38.
J. B.
Park
,
J.
Graciani
,
J.
Evans
,
D.
Stacchiola
,
S. G.
Ma
,
P.
Liu
,
A.
Nambu
,
J. F.
Sanz
,
J.
Hrbek
, and
J. A.
Rodriguez
, “
High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
4975
4980
(
2009
).
39.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
40.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
41.
S. H.
Kim
,
C.-H.
Jung
,
N.
Sahu
,
D.
Park
,
J. Y.
Yun
,
H.
Ha
, and
J. Y.
Park
, “
Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation
,”
Appl. Catal., A
454
,
53
58
(
2013
).
42.
S.
Watanabe
,
X.
Ma
, and
C.
Song
, “
Characterization of structural and surface properties of nanocrystalline TiO2–CeO2 mixed oxides by XRD, XPS, TPR, and TPD
,”
J. Phys. Chem. C
113
,
14249
14257
(
2009
).
43.
Y.
Zhou
,
D. E.
Doronkin
,
M.
Chen
,
S.
Wei
, and
J.-D.
Grunwaldt
, “
Interplay of Pt and crystal facets of TiO2: CO oxidation activity and operando XAS/DRIFTS studies
,”
ACS Catal.
6
,
7799
7809
(
2016
).
44.
G.
Liu
,
H. G.
Yang
,
X.
Wang
,
L.
Cheng
,
H.
Lu
,
L.
Wang
,
G. Q.
Lu
, and
H.-M.
Cheng
, “
Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets
,”
J. Phys. Chem. C
113
,
21784
21788
(
2009
).
45.
M. W.
Shah
,
Y.
Zhu
,
X.
Fan
,
J.
Zhao
,
Y.
Li
,
S.
Asim
, and
C.
Wang
, “
Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis
,”
Sci. Rep.
5
,
15804
(
2015
).
46.
I.
Luciu
,
R.
Bartali
, and
N.
Laidani
, “
Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2−x thin films deposited by RF sputtering
,”
J. Phys. D: Appl. Phys.
45
,
345302
(
2012
).
47.
X.
Xue
,
R.
Chen
,
H.
Chem
,
Y.
Hu
,
Q.
Ding
,
Z.
Liu
,
L.
Ma
,
G.
Zhu
,
W.
Zhang
,
Q.
Yu
,
J.
Liu
,
J.
Ma
, and
Z.
Jin
, “
Oxygen vacancy engineering promoted photocatalyic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets
,”
Nano Lett.
18
,
7372
7377
(
2018
).
48.
G.
Zhang
,
Z.
Hu
,
M.
Sun
,
Y.
Liu
,
L.
Liu
,
H.
Liu
,
C.
Huang
,
J.
Qu
, and
J.
Li
, “
Formation of Bi2WO6 bipyramids with vacancy pairs for enhanced solar-driven photoactivity
,”
Adv. Funct. Mater.
25
,
3726
(
2015
).
49.
J.
Su
,
C.
Xie
,
C.
Chen
,
Y.
Yu
,
G.
Kennedy
,
G. A.
Somorjai
, and
P.
Yang
, “
Insights into the mechanism of tandem alkene hydroformylation over a nanostructured catalyst with multiple interfaces
,”
J. Am. Chem. Soc.
138
,
11568
11574
(
2016
).
50.
K.
An
,
S.
Alayoglu
,
N.
Musselwhite
,
K.
Na
, and
G. A.
Somorjai
, “
Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane
,”
J. Am. Chem. Soc.
136
,
6830
6833
(
2014
).
51.
X.
Liu
,
J.
Iocozzia
,
Y.
Wang
,
X.
Cui
,
Y.
Chen
,
S.
Zhao
,
Z.
Li
, and
Z.
Lin
, “
Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation
,”
Energy Environ. Sci.
10
,
402
434
(
2017
).
52.
S.
Mandal
,
D.
Roy
,
R. V.
Chaudhari
, and
M.
Sastry
, “
Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: Excellent catalysts for hydrogenation and Heck reactions
,”
Chem. Mater.
16
,
3714
3724
(
2004
).
53.
S.
Oh
,
Y. K.
Kim
,
C. H.
Jung
,
W. H.
Doh
, and
J. Y.
Park
, “
Effect of the metal–support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides
,”
Chem. Commun.
54
,
8174
8177
(
2018
).
54.
L.
Di
,
D.
Duan
,
X.
Zhang
,
B.
Qi
, and
Z.
Zhang
, “
Effect of TiO2 crystal phase and preparation method on the catalytic performance of Au/TiO2 for CO oxidation
,”
IEEE Trans. Plasma Sci.
44
,
2692
(
2016
).
55.
M. A.
Albiter
and
F.
Zaera
, “
Adsorption properties of supported platinum catalysts prepared using dendrimers
,”
Langmuir
26
,
16204
16210
(
2010
).
56.
K.
Ding
,
A.
Gulec
,
A. M.
Johnson
,
N. M.
Schweitzer
,
G. D.
Stucky
,
L. D.
Marks
, and
P. C.
Stair
, “
Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts
,”
Science
350
,
189
192
(
2015
).
57.
J.
Sirita
,
S.
Phanichphant
, and
F. C.
Meunier
, “
Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR
,”
Ann. Chem.
79
,
3912
3918
(
2007
).
58.
A. D.
Allian
,
K.
Takanabe
,
K. L.
Fujdala
,
X.
Hao
,
T. J.
Truex
,
J.
Cai
,
C.
Buda
,
M.
Neurock
, and
E.
Iglesia
, “
Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters
,”
J. Am. Chem. Soc.
133
,
4498
4517
(
2011
).
59.
J.
Xu
and
J. T.
Yates
, Jr.
, “
Terrace width effect on adsorbate vibrations: A comparison of Pt(335) and Pt(112) for chemisorption of CO
,”
Surf. Sci.
327
,
193
201
(
1995
).
60.
R.
Shigeishi
and
D. A.
King
, “
Chemisorption of carbon monoxide on platinum {111}: Reflection-absorption infrared spectroscopy
,”
Surf. Sci.
58
,
379
396
(
1976
).
61.
F.
Boccuzzi
,
A.
Chiorino
,
M.
Manzoli
,
P.
Lu
,
T.
Akita
,
S.
Ichikawa
, and
M.
Haruta
, “
Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation
,”
J. Catal.
202
,
256
267
(
2001
).
62.
P.
Carlsson
,
L.
Osterlund
,
P.
Thormahlen
,
A.
Palmqvist
,
E.
Fridell
,
J.
Jansson
, and
M.
Skoglundh
, “
A transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts
,”
J. Catal.
226
,
422
434
(
2004
).
63.
J.
Ke
,
W.
Zhu
,
Y.
Jiang
,
R.
Si
,
Y.-J.
Wang
,
S.-C.
Li
,
C.
Jin
,
H.
Liu
,
W.-G.
Song
,
C.-H.
Yan
, and
Y.-W.
Zhang
, “
Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation
,”
ACS Catal.
5
,
5164
5173
(
2015
).
64.
C.
Lentz
,
S. P.
Jand
,
J.
Melke
,
C.
Roth
, and
P.
Kaghazchi
, “
DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations
,”
J. Mol. Catal. A: Chem.
426
,
1
9
(
2017
).
65.
A.
Martinez-Arias
,
J.
Coronado
,
R.
Cataluna
,
J.
Conesa
, and
J.
Soria
, “
Influence of mutual platinum-dispersed ceria interactions on the promoting effect of ceria for the CO oxidation reaction in a Pt/CeO2/Al2O3 catalyst
,”
J. Phys. Chem. B
102
,
4357
4365
(
1998
).
66.
M. J.
Kale
and
P.
Christopher
, “
Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3-supported Pt catalysts
,”
ACS Catal.
6
,
5599
5609
(
2016
).
67.
X.
Lin
,
B.
Yang
,
H.-M.
Benia
,
P.
Myrach
,
M.
Yulikov
,
A.
Aumer
,
M. A.
Brown
,
M.
Sterrer
,
O.
Bondarchuk
, and
E.
Kieseritzky
, “
Charge-mediated adsorption behavior of CO on MgO-supported Au clusters
,”
J. Am. Chem. Soc.
132
,
7745
7749
(
2010
).
68.
J.
Lee
,
Y.
Ryou
,
X.
Chan
,
T. J.
Kim
, and
D. H.
Kim
, “
How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2
,”
J. Phys. Chem. C
120
,
25870
25879
(
2016
).
69.
J. A.
Farmer
and
C. T.
Campbell
, “
Ceria maintains smaller metal catalyst particles by strong metal-support bonding
,”
Science
329
,
933
936
(
2010
).
70.
A.
Linsebigler
,
G.
Lu
, and
J. T.
Yates
, “
CO photooxidation on TiO2(110)
,”
J. Phys. Chem.
100
,
6631
6636
(
1996
).
71.
G.
Lu
,
A.
Linsebigler
, and
J. T.
Yates
, Jr.
, “
The adsorption and photodesorption of oxygen on the TiO2(110) surface
,”
J. Chem. Phys.
102
,
4657
4662
(
1995
).
72.
F.
Boccuzzi
and
A.
Chiorino
, “
FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers
,”
J. Phys. Chem. B
104
,
5414
5416
(
2000
).
73.
J. D.
Henao
,
T.
Caputo
,
J. H.
Yang
,
M. C.
Kung
, and
H. H.
Kung
, “
In situ transient FTIR and XANES studies of the evolution of surface species in CO oxidation on Au/TiO2
,”
J. Phys. Chem. B
110
,
8689
8700
(
2006
).
74.
L.-F.
Liao
,
C.-F.
Lien
,
D.-L.
Shieh
,
M.-T.
Chen
, and
J.-L.
Lin
, “
FTIR study of adsorption and photoassisted oxygen isotopic exchange of carbon monoxide, carbon dioxide, carbonate, and formate on TiO2
,”
J. Phys. Chem. B
106
,
11240
11245
(
2002
).
75.
L.
DeRita
,
S.
Dai
,
K.
Lopez-Zepeda
,
N.
Pham
,
G. W.
Graham
,
X.
Pan
, and
P.
Christopher
, “
Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2
,”
J. Am. Chem. Soc.
139
,
14150
14165
(
2017
).
76.
Q.
Fu
,
W.-X.
Li
,
Y.
Yao
,
H.
Liu
,
H.-Y.
Su
,
D.
Ma
,
X.-K.
Gu
,
L.
Chen
,
Z.
Wang
, and
H.
Zhang
, “
Interface-confined ferrous centers for catalytic oxidation
,”
Science
328
,
1141
1144
(
2010
).
77.
S.
Oh
,
S.
Back
,
W. H.
Doh
,
S. Y.
Moon
,
J.
Kim
,
Y.
Jung
, and
J. Y.
Park
, “
Probing surface oxide formations on SiO2-supported platinum nanocatalysts under CO oxidation
,”
RSC Adv.
7
,
45003
45009
(
2017
).
78.
Z.
Duan
and
G.
Henkelman
, “
Calculations of CO oxidation over a Au/TiO2 catalyst: A study of active sites, catalyst deactivation, and moisture effects
,”
ACS Catal.
8
,
1376
1383
(
2018
).
79.
M.
Kotobuki
,
R.
Leppelt
,
D.
Hansgen
,
D.
Widmann
, and
R.
Behm
, “
Reactive oxygen on a Au/TiO2 supported catalyst
,”
J. Catal.
264
,
67
76
(
2009
).
80.
H.
Ha
,
S.
Yoon
,
K.
An
, and
H. Y.
Kim
, “
Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: Effect of the Au–CeO2 interface
,”
ACS Catal.
8
,
11491
11501
(
2018
).
81.
H. Y.
Kim
and
G.
Henkelman
, “
CO oxidation at the interface of Au nanoclusters and the stepped-CeO2 (111) surface by the Mars-van Krevelen mechanism
,”
J. Phys. Chem. Lett.
4
,
216
221
(
2013
).
82.
G. N.
Vayssilov
,
Y.
Lykhach
,
A.
Migani
,
T.
Staudt
,
G. P.
Petrova
,
N.
Tsud
,
T.
Skala
,
A.
Bruix
,
F.
Illas
,
K. C.
Prince
,
V.
Matolin
,
K. M.
Neyman
, and
J.
Libuda
, “
Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles
,”
Nat. Mater.
10
,
310
315
(
2011
).
83.
D.
Widmann
and
R. J.
Behm
, “
Active oxygen on a Au/TiO2 catalyst: Formation, stability, and CO oxidation activity
,”
Angew. Chem., Int. Ed.
50
,
10241
10245
(
2011
).
84.
H.
Ha
,
H.
An
,
M.
Yoo
,
J.
Lee
, and
H. Y.
Kim
, “
Catalytic CO oxidation by CO-saturated Au nanoparticles supported on CeO2: Effect of CO coverage
,”
J. Phys. Chem. C
121
,
26895
26902
(
2017
).
85.
K.
Shin
,
L.
Zhang
,
H.
An
,
H.
Ha
,
M.
Yoo
,
H. M.
Lee
,
G.
Henkelman
, and
H. Y.
Kim
, “
Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts
,”
Nanoscale
9
,
5244
5253
(
2017
).

Supplementary Material

You do not currently have access to this content.