The versatility of the oxidative assembly method for the creation of 2D and 3D quantum dot (QD) architectures represents both an opportunity and a challenge as a method enabling controlled placement of chemically distinct QDs in multicomponent systems. The opportunity lies in the ability to independently tune the kinetics of the different components so that they are similar (leading to well-mixed systems) or different (enabling gradient or phase-segregated composites) using a wide range of variables; the challenge lies in understanding those variables and how their interplay affects the overall kinetics. Here, we show that the identity of the cation in the sulfide matrix (M = Cd2+ vs Zn2+) plays a large role in the kinetics of assembly of mass spectrometry QDs, attributed to differences in solubility. Time resolved dynamic light scattering is used to monitor the hydrodynamic radius, R¯h. ZnS shows an exponential growth associated with reaction-limited cluster aggregation (RLCA), whereas CdS demonstrates a significant induction period (10–75 min) followed by a growth step that cannot be distinguished between RLCA and diffusion limited cluster aggregation. These data correlate with relative solubilities of the nanoparticles, as probed by free-cation concentration. Data also confirm prior studies showing that cubic-closest-packed (ccp) lattices are kinetically slow relative to hexagonally closest-packed (hcp); using the slope of the ln R¯h vs time plot for the rate constant, the values of 0.510 s−1 and 3.92 s−1 are obtained for ccp ZnS and hcp ZnS, respectively. Thus, both the structure and the solubility are effective levers for adjusting the relative reactivity of QDs toward oxidative assembly.

1.
W. U.
Huynh
,
J. J.
Dittmer
, and
A. P.
Alivisatos
,
Science
295
,
2425
2427
(
2002
).
2.
D. C.
Oertel
,
M. G.
Bawendi
,
A. C.
Arango
, and
V. J.
Bulović
,
Appl. Phys. Lett.
87
,
213505
(
2005
).
3.
G.
Konstantatos
,
I.
Howard
,
A.
Fischer
,
S.
Hoogland
,
J.
Clifford
,
E.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nature
442
,
180
(
2006
).
4.
V.
Colvin
,
M.
Schlamp
, and
A. P.
Alivisatos
,
Nature
370
,
354
(
1994
).
5.
D. V.
Talapin
and
C. B.
Murray
,
Science
310
,
86
89
(
2005
).
6.
M.
Urdaneta
,
P.
Stepanov
,
I.
Weinberg
,
I.
Pala
, and
S.
Brock
,
J. Instrum.
6
,
C01027
(
2011
).
7.
M. V.
Kovalenko
,
M. I.
Bodnarchuk
, and
D. V.
Talapin
,
J. Am. Chem. Soc.
132
,
15124
15126
(
2010
).
8.
M. V.
Kovalenko
,
B.
Spokoyny
,
J. S.
Lee
,
M.
Scheele
,
A.
Weber
,
S.
Perera
,
D.
Landry
, and
D. V.
Talapin
,
J. Am. Chem. Soc.
132
,
6686
6695
(
2010
).
9.
V.
Sayevich
,
B.
Cai
,
A.
Benad
,
D.
Haubold
,
L.
Sonntag
,
N.
Gaponik
,
V.
Lesnyak
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
55
,
6334
6338
(
2016
).
10.
H.
Zhang
,
B.
Hu
,
L.
Sun
,
R.
Hovden
,
F. W.
Wise
,
D. A.
Muller
, and
R. D.
Robinson
,
Nano Lett.
11
,
5356
5361
(
2011
).
11.
I. K.
Hewavitharana
and
S. L.
Brock
,
ACS Nano
11
,
11217
11224
(
2017
).
12.
S. L.
Brock
,
I. U.
Arachchige
, and
K. K.
Kalebaila
,
J. Inorg. Chem.
27
,
103
126
(
2006
).
13.
J. L.
Mohanan
,
I. U.
Arachchige
, and
S. L.
Brock
,
Science
307
(
5708
),
397
400
(
2005
).
14.
J. L.
Mohanan
and
S. L.
Brock
,
J. Non-Cryst. Solids
350
,
1
8
(
2004
).
15.
J. N.
De Freitas
,
L.
Korala
,
L. X.
Reynolds
,
S. A.
Haque
,
S. L.
Brock
, and
A. F.
Nogueira
,
Phys. Chem. Chem. Phys.
14
,
15180
15184
(
2012
).
16.
W.
Dong
,
W.
Rhine
,
G.
Caggiano
,
O. R.
Evans
,
G.
Gould
,
J.
White
,
J.
Sharp
,
P.
Gilbert
,
S.
Ganguly
, and
S. L.
Brock
,
Mater. Res. Soc. Symp. Proc.
1306
,
Mrsf10-1306-bb12-02
(
2011
).
17.
S.
Ganguly
and
S. L.
Brock
,
J. Mater. Chem.
21
,
8800
8806
(
2011
).
18.
S.
Ganguly
,
C.
Zhou
,
D.
Morelli
,
J.
Sakamoto
, and
S. L.
Brock
,
J. Phys. Chem. C
116
,
17431
17439
(
2012
).
19.
S.
Ganguly
,
C.
Zhou
,
D.
Morelli
,
J.
Sakamoto
,
C.
Uher
, and
S. L.
Brock
,
J. Solid State Chem.
184
(
12
),
3195
3201
(
2011
).
20.
K. K.
Kalebaila
and
S. L.
Brock
,
Z. Anorg. Allg. Chem.
638
,
2598
2603
(
2012
).
21.
L.
Korala
and
S. L.
Brock
,
J. Phys. Chem. C
116
,
17110
17117
(
2012
).
22.
L.
Korala
,
J. R.
Germain
,
E.
Chen
,
I. R.
Pala
,
D.
Li
, and
S. L.
Brock
,
Inorg. Chem. Front.
4
,
1451
1457
(
2017
).
23.
L.
Korala
,
Z.
Wang
,
Y.
Liu
,
S.
Maldonado
, and
S. L.
Brock
,
ACS Nano
7
,
1215
1223
(
2013
).
24.
I. R.
Pala
and
S. L.
Brock
,
ACS Appl. Mater. Interfaces
4
,
2160
2167
(
2012
).
25.
Q.
Yao
and
S. L.
Brock
,
Inorg. Chem.
50
,
9985
9992
(
2011
).
26.
Q.
Yao
and
S. L.
Brock
,
Nanotechnology
21
,
115502
(
2010
).
27.
N.
Gaponik
,
A.-K.
Herrmann
, and
A.
Eychmüller
,
J. Phys. Chem. Lett.
3
,
8
17
(
2011
).
28.
T.
Gacoin
,
K.
Lahlil
,
P.
Larregaray
, and
J. P.
Boilot
,
J. Phys. Chem. B
105
,
10228
10235
(
2001
).
29.
A.
Shavel
,
N.
Gaponik
, and
A.
Eychmüller
,
Eur. J. Inorg. Chem.
2005
,
3613
3623
.
30.
L.
Malier
,
J.
Boilot
, and
T.
Gacoin
,
J. Sol-Gel Sci. Technol.
31
,
61
64
(
1998
).
31.
N.
Gaponik
,
A.
Wolf
,
R.
Marx
,
V.
Lesnyak
,
K.
Schilling
, and
A.
Eychmüller
,
Adv. Mater.
20
,
4257
4262
(
2008
).
32.
P. V.
Kamat
,
J. Phys. Chem. Lett.
4
,
908
918
(
2013
).
33.
N.
Zheng
,
X.
Bu
,
H.
Vu
, and
P.
Feng
,
Dalton Trans.
44
,
5299
5303
(
2005
).
34.
J. L.
Davis
,
A. M.
Chalifoux
, and
S. L.
Brock
,
Langmuir
33
,
9434
9443
(
2017
).
35.
J. L.
Fenton
,
B. C.
Steimle
, and
R. E.
Schaak
,
Inorg. Chem.
58
,
672
678
(
2019
).
36.
R.
Ma
,
C. M.
Levard
,
F. M.
Michel
, and
G. E.
Brown
, Jr.
,
Environ. Sci. Technol.
47
,
2527
2534
(
2013
).
37.
S.
Manley
,
L.
Cipelletti
,
V.
Trappe
,
A.
Bailey
,
R. J.
Christianson
,
U.
Gasser
,
V.
Prasad
,
P.
Segre
,
M.
Doherty
, and
S.
Sankaran
,
Phys. Rev. Lett.
93
(
10
),
108302
(
2004
).
38.
T.
Norisuye
,
M.
Inoue
,
M.
Shibayama
,
R.
Tamaki
, and
Y.
Chujo
,
Macromolecules
33
,
900
905
(
2000
).
39.
W. M.
Latimer
,
The Oxidation States of the Elements and Their Potentials in Aqueous Solutions
(
Prentice-Hall
,
1952
).
40.
A.
Ringbom
, “
Solubilities of sulfides: Preliminary report to the commission on physicochemical data of analytical interest
,” in
Analytical Section IUPAC, July 1953
(
International Union of Pure and Applied Chemistry
,
1953
).
41.
H. C.
Helgeson
,
Am. J. Sci.
267
,
729
804
(
1969
).
42.
I. A.
Mudunkotuwa
,
T.
Rupasinghe
,
C.-M.
Wu
, and
V. H.
Grassian
,
Langmuir
28
,
396
403
(
2011
).
43.
M.
Lin
,
H. M.
Lindsay
,
D.
Weitz
,
R.
Ball
,
R.
Klein
, and
P.
Meakin
,
Nature
339
,
360
(
1989
).
44.
S.
Jungblut
,
J. O.
Joswig
, and
A.
Eychmüller
,
J. Phys. Chem. C
123
,
950
954
(
2018
).
45.
S.
Jungblut
,
J. O.
Joswig
, and
A.
Eychmüller
,
Phys. Chem. Chem. Phys.
21
,
5723
5729
(
2019
).
46.
J. L.
Davis
,
K. L.
Silva
, and
S. L.
Brock
,
Chem. Comm.
(in press).

Supplementary Material

You do not currently have access to this content.