Oxidative decomposition of organic-solvent-based liquid electrolytes at cathode material interfaces has been identified as the main reason for rapid capacity fade in high-voltage lithium ion batteries. The evolution of “cathode electrolyte interphase” (CEI) films, partly or completely consisting of electrolyte decomposition products, has also recently been demonstrated to correlate with battery cycling behavior at high potentials. Using density functional theory calculations, the hybrid PBE0 functional, and the (001) surfaces of spinel oxides as models, we examine these two interrelated processes. Consistent with previous calculations, ethylene carbonate (EC) solvent molecules are predicted to be readily oxidized on the LixMn2O4 (001) surface at modest operational voltages, forming adsorbed organic fragments. Further oxidative decomposition of such CEI fragments to release CO2 gas is however predicted to require higher voltages consistent with LixNi0.5Mn1.5O4 (LNMO) at smaller x values. We argue that multistep reactions, involving first formation of CEI films and then further oxidization of CEI at higher potentials, are most relevant to capacity fade. Mechanisms associated with dissolution or oxidation of native Li2CO3 films, which are removed before the electrolyte is in contact with oxide surfaces, are also explored.

1.
A.
Manthiram
,
K.
Chemelewski
, and
E.-S.
Lee
,
Energy Environ. Sci.
7
,
1339
(
2014
).
2.
T. R.
Jow
,
J. L.
Allen
,
O.
Borodin
,
S. A.
Delp
, and
J. L.
Allen
, in
TMS 2014 Supplemental Proceedings
(
The Minerals, Metals, and Materials Society
,
2014
), p.
853
.
3.
H.
Duncan
,
B.
Hai
,
M.
Leskes
,
C. P.
Grey
, and
G. Y.
Chen
,
Chem. Mater.
26
,
5374
(
2014
).
4.
Z.
Moorhead-Rosenberg
,
A.
Huq
,
J. B.
Goodenough
, and
A.
Manthiram
,
Chem. Mater.
27
,
6934
(
2015
).
5.
K.
Xu
,
Chem. Rev.
104
,
4303
(
2014
).
6.
A.
Jarry
,
S.
Gottis
,
Y.-S.
Yu
,
J.
Roque-Rosell
,
C.
Kim
,
J.
Cabana
,
J.
Kerr
, and
R.
Kostecki
,
J. Am. Chem. Soc.
137
,
3533
(
2015
).
7.
X.
Fan
,
L.
Chen
,
O.
Borodin
,
X.
Ji
,
J.
Chen
,
S.
Hou
,
T.
Deng
,
J.
Zheng
,
C.
Yang
,
S.-C.
Liou
,
K.
Amine
,
K.
Xu
, and
C.
Wang
,
Nat. Nanotechnol.
13
,
715
(
2018
).
8.
C.-C.
Su
,
M.
He
,
P. C.
Redfern
,
L. A.
Curtiss
,
I. A.
Shkrob
, and
Z. C.
Zhang
,
Energy Environ. Sci.
10
,
900
(
2017
).
9.
M.
Hirayama
,
H.
Ido
,
K. S.
Kim
,
W.
Cho
,
K.
Tamura
,
J.
Mizuki
, and
R.
Kanno
,
J. Am. Chem. Soc.
132
,
15268
(
2010
).
10.
M.
Hirayama
,
N.
Sonoyama
,
M.
Ito
,
M.
Minoura
,
D.
Mori
,
A.
Yamada
,
K.
Tamura
,
J.
Mizuki
, and
R.
Kanno
,
J. Electrochem. Soc.
154
,
A1065
(
2007
).
11.
J.-W.
Song
,
C. C.
Nguyen
,
H.
Choi
,
K.-H.
Lee
,
K.-H.
Han
,
Y.-J.
Kim
,
S.
Choy
, and
S. W.
Song
,
J. Electrochem. Soc.
158
,
A458
(
2011
).
12.
There are questions about how much Li2CO3 exists in the CEI,
K.
Edström
,
T.
Gustafsson
, and
J. O.
Thomas
,
Electrochim. Acta
50
,
397
(
2004
).
13.
M.
Moshkovich
,
M.
Cojocaru
,
H. E.
Gottlieb
, and
D.
Aurbach
,
J. Electroanal. Chem.
497
,
84
(
2001
).
14.
D.
Aurbach
,
B.
Markovsky
,
M. D.
Levi
,
E.
Levi
,
A.
Schechter
,
M.
Moshkovich
, and
Y.
Cohen
,
J. Power Sources
81-82
,
95
(
1999
).
15.
T.
Yoon
,
D.
Kim
,
K. H.
Park
,
H.
Park
,
S.
Jurng
,
J.
Jang
,
J. H.
Ryu
,
J. J.
Kim
, and
S. M.
Oh
,
J. Electrochem. Soc.
161
,
A519
(
2014
).
16.
T.
Yoon
,
T.
Lee
,
J.
Soon
,
H.
Jeong
,
S.
Jurng
,
J. H.
Ryu
, and
S. M.
Oh
,
J. Electrochem. Soc.
165
,
A1095
(
2018
).
17.
F.
Simmen
,
A.
Hintennach
,
M.
Horisberger
,
T.
Lippert
,
P.
Novák
,
C. W.
Schneider
, and
A.
Wokaun
,
J. Electrochem. Soc.
157
,
A1026
(
2010
).
18.
S.
Fang
,
D.
Jackson
,
M. L.
Dreibelbis
,
T. F.
Kuech
, and
R. J.
Hamers
,
J. Power Sources
373
,
184
(
1028
).
19.
R.
Sahore
,
F.
Dogan
, and
I. D.
Bloom
,
Chem. Mater.
31
,
2884
(
2019
).
20.
W.
Choi
and
A.
Manthiram
,
J. Electrochem. Soc.
153
,
A1760
(
2006
).
21.
F.
Lin
,
I. M.
Markus
,
D.
Nordlund
,
T.-C.
Weng
,
M. D.
Asta
,
H. L.
Xin
, and
M. M.
Doeff
,
Nat. Commun.
5
,
3529
(
2014
) and references therein.
22.
L.
Zou
,
Z.
Liu
,
W.
Zhao
,
H.
Jia
,
J.
Zheng
,
Y.
Yang
,
G.
Wang
,
J.-L.
Zhang
, and
C. M.
Wang
,
Chem. Mater.
30
,
7016
(
2018
).
23.
Y. S.
Jung
,
A. S.
Cavanagh
,
A. C.
Dillon
,
M. D.
Groner
,
S. M.
George
, and
S.-H.
Lee
,
J. Electrochem. Soc.
157
,
A75
(
2010
).
24.
X. C.
Xiao
,
D.
Ahn
,
Z.
Liu
,
J.-H.
Kim
, and
P.
Lu
,
Electrochem. Commun.
32
,
31
(
2013
).
25.
J. W.
Kim
,
D. H.
Kim
,
D. Y.
Oh
,
H.
Lee
,
J. H.
Kim
,
J. H.
Lee
, and
Y. S.
Jung
,
J. Power Sources
274
,
1254
(
2015
).
26.
L.
Baggetto
,
N. J.
Dudney
, and
G. M.
Veith
,
Electrochim. Acta
90
,
135
(
2013
).
27.
Y.
Kim
,
N. J.
Dudney
,
M. F.
Chi
,
S. K.
Martha
,
J.
Nanda
,
G. M.
Veith
, and
C. D.
Liang
,
J. Electrochem. Soc.
160
,
A3113
(
2013
).
28.
X.
Wang
and
G.
Yushin
,
Energy Environ. Sci.
8
,
1889
(
2015
).
29.
F. L.
Zhang
,
T. T.
Geng
,
F. F.
Peng
,
D. N.
Zhao
,
N. S.
Zhang
,
H. M.
Zhang
, and
S. Y.
Li
,
ChemElectroChem
6
,
731
(
2019
).
30.
D. N.
Zhao
,
S. N.
Song
,
X. S.
Ye
,
P.
Wang
,
J.
Wang
,
Y.
Wei
,
C. L.
Li
,
L. P.
Mao
,
H. M.
Zhang
, and
S. Y.
Li
,
Appl. Surf. Sci.
491
,
595
(
2019
).
31.
J.
Alvarado
,
M. A.
Schroeder
,
M.
Zhang
,
O.
Borodin
,
E.
Gobrogge
,
M.
Olguin
,
M. S.
Ding
,
M.
Gobet
,
S.
Greenbaum
,
Y. S.
Meng
, and
K.
Xu
,
Mater. Today
21
,
341
(
2018
).
32.
M.
Matsui
,
K.
Dokko
, and
K.
Kanamura
,
J. Electrochem. Soc.
157
,
A121
(
2010
).
33.
C.-Y.
Tang
,
K.
Leung
,
R. T.
Haasch
, and
S. J.
Dillon
,
ACS Appl. Mater. Interfaces
9
,
33968
(
2017
).
34.
C. Y.
Tang
,
Y.
Ma
,
R. T.
Haasch
,
J.-H.
Ouyang
, and
S. J.
Dillon
,
J. Phys. Chem. Lett.
8
,
6226
(
2017
).
35.
Z. W.
Lebens-Higgins
,
S.
Sallis
,
N. V.
Faenza
,
F.
Badway
,
N.
Pereira
,
D. M.
Halat
,
M.
Wahila
,
C.
Schlueter
,
T.-L.
Lee
,
W.
Yang
,
C. P.
Grey
,
G. G.
Amatucci
, and
L. F. J.
Piper
,
Chem. Mater.
30
,
958
(
2018
).
36.
H.-J.
Peng
, Ph.D. thesis,
ETH Zürich
,
2016
.
37.
Y.
Ma
,
L.
Feng
,
C.-Y.
Tang
,
J.-H.
Ouyang
, and
S. J.
Dillon
,
J. Electrochem. Soc.
165
,
A3084
(
2018
).
38.
Z.
Zhou
,
P.
Lu
,
C.
Delacourt
,
R.
Qiao
,
K.
Xu
,
F.
Pan
, and
S. J.
Harris
,
Chem. Commun.
54
,
814
(
2018
).
39.
G. M.
Veith
,
M.
Doucet
,
J. K.
Baldwin
,
R. L.
Sacci
,
T. M.
Fears
,
Y.
Wang
, and
J. F.
Browning
,
J. Phys. Chem. C
119
,
20339
(
2015
).
40.
K.
Leung
,
F.
Soto
,
K.
Hankins
,
P. B.
Balbuena
, and
K. L.
Harrison
,
J. Phys. Chem. C
120
,
6302
(
2016
).
41.
F.
Soto
,
Y.
Ma
,
J.
Martinez de la Hoz
,
J.
Seminario
, and
P. B.
Balbuena
,
Chem. Mater.
27
,
7990
(
2015
).
42.
M.
He
,
L.
Boulet-Roblin
,
P.
Borel
,
C.
Tessier
,
P.
Novák
,
C.
Villevielle
, and
E. J.
Berg
,
J. Electrochem. Soc.
163
,
A83
(
2016
).
43.
R.
Jung
,
P.
Strobl
,
F.
Maglia
,
C.
Stinner
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
165
,
A2869
(
2018
).
44.
R.
Jung
,
M.
Metzger
,
F.
Maglia
,
C.
Stinnner
, and
H. A.
Gasteiger
,
J. Phys. Chem. Lett.
8
,
4820
(
2017
).
45.
M.
Metzger
,
C.
Marino
,
J.
Sicklinger
,
D.
Haering
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
162
,
A1123
(
2015
).
46.
M.
Xu
,
N.
Tsiouvaras
,
A.
Garsuch
,
H. A.
Gasteiger
, and
B. L.
Lucht
,
J. Phys. Chem. C
118
,
7363
(
2014
).
47.
H.
Wang
,
E.
Rus
,
T.
Sakuraba
,
J.
Kiluchi
,
Y.
Kiya
, and
H. D.
Abruna
,
Anal. Chem.
86
,
6197
(
2014
).
48.
B.
Michalak
,
B. B.
Berkes
,
H.
Sommer
,
T.
Bergfeldt
,
T.
Brezesinski
, and
J.
Janek
,
Anal. Chem.
88
,
2877
(
2016
).
49.
Z.
Jusys
,
M.
Binder
,
J.
Schnaidt
, and
R. J.
Behm
,
Electrochim. Acta
314
,
188
(
2019
).
50.
L.
Xing
,
O.
Borodin
,
G. D.
Smith
, and
W.
Li
,
J. Phys. Chem. A
115
,
13896
(
2011
).
51.
O.
Borodin
,
X.
Ren
,
J.
Vatamanu
,
A.
von Wald Cresce
,
J.
Knap
, and
K.
Xu
,
Acc. Chem. Res.
50
,
2886
(
2017
).
52.
Y.
Okuno
,
K.
Ushirogata
,
K.
Sodeyama
,
G.
Shukri
, and
T.
Tateyama
,
J. Phys. Chem. C
123
,
2267
(
2019
).
53.
K.
Leung
,
J. Phys. Chem. C
116
,
9852
(
2012
).
54.
M.
Kumar
,
K.
Leung
, and
D. J.
Siegel
,
J. Electrochem. Soc.
161
,
E3059
(
2014
).
55.
O.
Borodin
,
M.
Olguin
,
C. E.
Spear
,
K. W.
Leiter
, and
J.
Knap
,
Nanotechnology
26
,
354003
(
2015
).
56.
L.
Giordano
,
P.
Karayaylali
,
Y.
Yu
,
F.
Maglia
,
S.
Lux
, and
Y.
Shao-Horn
,
J. Phys. Chem. Lett.
8
,
3881
(
2017
).
57.
T. M.
Ostergaard
,
L.
Giordano
,
I. E.
Castelli
,
F.
Maglia
,
B. K.
Antonopoulos
,
Y.
Shao-Horn
, and
J.
Rossmeisl
,
J. Phys. Chem. C
122
,
10442
(
2018
).
58.
J. L.
Tebbe
,
T. F.
Fuerst
, and
C. B.
Musgrave
,
ACS Appl. Mater. Interfaces
8
,
26664
(
2016
).
59.
J. L.
Tebbe
,
T. F.
Fuerst
, and
C. B.
Musgrave
,
J. Power Sources
297
,
427
(
2015
).
60.
S.
Xu
,
G.
Luo
,
R.
Jacobs
,
S.
Fang
,
M. K.
Mahanthappa
,
R. J.
Hamers
, and
D.
Morgan
,
ACS Appl. Mater. Interfaces
9
,
20545
(
2017
).
61.
L.
Huai
,
Z.
Chen
, and
L.
Li
,
ACS Appl. Mater. Interfaces
9
,
36377
(
2017
).
62.
X.
Qin
,
P. B.
Balbuena
, and
M.
Shao
,
J. Phys. Chem. C
123
,
14449
(
2019
).
63.
E.
Evenstein
,
Rosy
,
S.
Haber
,
H.
Sclar
,
L.
Houlen
,
K.
Leung
,
M.
Leskes
, and
M.
Noked
,
Energy Storage Mater.
19
,
261
(
2019
).
64.
N. N.
Intan
,
K.
Klyukin
, and
V.
Alexandrov
,
ACS Appl. Mater. Interfaces
11
,
20110
(
2019
).
65.
R.
Benedek
,
J. Phys. Chem. C
121
,
22049
(
2017
).
66.

Such CEI formation behavior would be distinct from lithium ion battery anodes where parasitic reactions responsible for formation and evolution of solid-electrolyte-interphase surface films often involve long-range electron transfer and can occur away from electrode surfaces.

67.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
68.
G.
Tian
,
Y.
Mo
, and
J.
Tao
,
Computation
5
,
27
(
2017
).
69.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W. T.
Yang
,
Science
321
,
792
(
2008
).
70.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
71.
S. E.
Renfrew
and
B. D.
McCloskey
,
J. Am. Chem. Soc.
139
,
17853
(
2017
).
72.
N.
Mahne
,
S. E.
Renfrew
,
B. D.
McCloskey
, and
S. A.
Freunberger
,
Angew. Chem., Int. Ed.
57
,
5529
(
2018
).
73.
A. C.
Luntz
and
B. D.
McCloskey
,
Chem. Rev.
114
,
11721
(
2014
).
74.
S.
Meini
,
N.
Tsiouvaras
,
K. U.
Schwenke
,
M.
Piana
,
H.
Beyer
,
L.
Lange
, and
H. A.
Gasteiger
Phys. Chem. Chem. Phys.
15
,
11478
(
2013
).
75.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
76.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
77.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
78.
J.
Paier
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
127
,
024103
(
2007
).
79.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
80.
F.
Zhou
,
M.
Cococcioni
,
C. A.
Marianetti
,
D.
Morgan
, and
G.
Ceder
,
Phys. Rev. B
70
,
235121
(
2004
).
81.
J.-H.
Kim
,
A.
Huq
,
M. F.
Chi
,
N. P. W.
Pieczonka
,
E.
Lee
,
C. A.
Bridges
,
M. M.
Tessema
,
A.
Manthiram
,
K. A.
Persson
, and
B. R.
Powell
,
Chem. Mater.
26
,
4377
(
2014
).
82.
Other DFT + U implementations have been applied to spinel LMO; see
I.
Scivetti
and
G.
Teobaldi
,
J. Phys. Chem. C
119
,
21358
(
2015
).
83.
M. S.
Islam
and
C. A. J.
Fisher
,
Chem. Soc. Rev.
43
,
185
(
2014
).
84.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
85.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
86.

The (111) surface should be most prominent, and reconstructed (111) surface models have been devised.82,88,89 Direct contact between molecules and transition metal ions on the (111) surface will first require creation of oxygen vacancies. The (001) surface, which requires a smaller simulation cell and is commensurate with Li2CO3 lattice constants, is adopted herein for ease of computation.

87.
E.
Lee
and
K. A.
Persson
,
Chem. Mater.
25
,
2885
(
2013
).
88.
N. N.
Intan
,
K.
Klyukin
, and
V.
Alexandrov
,
J. Electrochem. Soc.
165
,
A1099
(
2018
).
89.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
90.
D.
Aurbach
,
K.
Gamolsky
,
B.
Markovsky
,
G.
Salitra
,
Y.
Gofer
,
U.
Heider
,
R.
Oesten
, and
M.
Schmidt
,
J. Electrochem. Soc.
147
,
1322
(
2000
).
91.
K.
Leung
and
A.
Leenheer
,
J. Phys. Chem. C
119
,
10234
(
2015
).
92.
Y.
Duan
and
D. C.
Sorescu
,
Phys. Rev. B
79
,
014301
(
2009
).
93.
S.
Shi
,
Y.
Qi
,
H.
Li
, and
L. G.
Hector
,
J. Phys. Chem. C
117
,
8579
(
2013
).
94.

The potential should technically also depend on the outer interface between Li2CO3 and the polymeric CEI on top of it, as well as the polymeric CEI/liquid electrolyte interface. The structures of these highly complex interfaces are unknown, and they are neglected herein.

95.
S.
Trasatti
,
Pure Appl. Chem.
58
,
955
(
1986
).
96.
K.
Leung
,
Phys. Chem. Chem. Phys.
17
,
1637
(
2015
).
97.
M.-T. F.
Rodrigues
,
K.
Kalaga
,
S. E.
Trask
,
I. A.
Shkrob
, and
D. P.
Abraham
,
J. Electrochem. Soc.
165
,
A1697
(
2018
).
98.
M.
Metzger
,
B.
Strehle
,
S.
Solchenbach
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
163
,
A1219
(
2016
).
99.
S.
Kasamatsu
and
O.
Sugino
,
J. Phys.: Condens. Matter
31
,
085901
(
2019
).

Supplementary Material

You do not currently have access to this content.