Dissolution is the primary route of Pt nanoparticle degradation in electrochemical devices, e.g., fuel cells. Investigation of potential-dependent dissolution kinetics of Pt nanoparticles is crucial to optimize the nanoparticle size and operating conditions for better performance. A mean-field kinetic theory under the steady-state approximation, combined with atomistic thermodynamics and Wulff construction, was developed to study the interplay between oxygen chemisorption, electrode potential, and particle size on the dissolution of Pt nanoparticles. We found that although oxygen chemisorption from electrode potential-induced water splitting can stabilize Pt nanoparticles through decreasing the surface energy and increasing the redox potential, the electrode potential plays a more decisive role in facilitating the dissolution of Pt nanoparticles. In comparison with the minor effect of oxygen chemisorption, an increase in the particle size, though reducing the dispersion, has a more significant effect on the suppression of the dissolution. These theoretical understandings on the effects of electrode potential and particle size on the dissolution are crucial for optimizing the nanoparticle size under oxidative operating conditions.

1.
D. Y.
Chung
,
J. M.
Yoo
, and
Y. E.
Sung
,
Adv. Mater.
30
,
1704123
(
2018
).
2.
S.
Cherevko
,
N.
Kulyk
, and
K. J.
Mayrhofer
,
Nano Energy
29
,
275
(
2016
).
3.
L.
Li
,
L.
Hu
,
J.
Li
, and
Z.
Wei
,
Nano Res.
8
,
418
(
2015
).
4.
Y.
Shao-Horn
,
W.
Sheng
,
S.
Chen
,
P.
Ferreira
,
E.
Holby
, and
D.
Morgan
,
Top. Catal.
46
,
285
(
2007
).
5.
B.
Chakraverty
,
J. Phys. Chem. Solids
28
,
2401
(
1967
).
6.
S.
Mitsushima
,
Y.
Koizumi
,
S.
Uzuka
, and
K.-I.
Ota
,
Electrochim. Acta
54
,
455
(
2008
).
7.
D. J.
Myers
,
X.
Wang
,
M. C.
Smith
, and
K. L.
More
,
J. Electrochem. Soc.
165
,
F3178
(
2018
).
8.
J.
Greeley
and
J. K.
Nørskov
,
Electrochim. Acta
52
,
5829
(
2007
).
9.
D.
Li
,
C.
Wang
,
D. S.
Strmcnik
,
D. V.
Tripkovic
,
X.
Sun
,
Y.
Kang
,
M.
Chi
,
J. D.
Snyder
,
D.
van der Vliet
, and
Y.
Tsai
,
Energy Environ. Sci.
7
,
4061
(
2014
).
10.
A. A.
Topalov
,
I.
Katsounaros
,
M.
Auinger
,
S.
Cherevko
,
J. C.
Meier
,
S. O.
Klemm
, and
K. J.
Mayrhofer
,
Angew. Chem., Int. Ed.
51
,
12613
(
2012
).
11.
S.
Hu
and
W. X.
Li
,
ChemNanoMat
4
,
510
(
2018
).
12.
J.
Wu
,
W.
Gao
,
H.
Yang
, and
J.-M.
Zuo
,
ACS Nano
11
,
1696
(
2017
).
13.
H.
Schmies
,
A.
Bergmann
,
J.
Drnec
,
G.
Wang
,
D.
Teschner
,
S.
Kühl
,
D. J.
Sandbeck
,
S.
Cherevko
,
M.
Gocyla
, and
M.
Shviro
,
Adv. Energy Mater.
8
,
1701663
(
2018
).
14.
A.
Kumar
and
V.
Ramani
,
ACS Catal.
4
,
1516
(
2014
).
15.
J. C.
Meier
,
C.
Galeano
,
I.
Katsounaros
,
A. A.
Topalov
,
A.
Kostka
,
F.
Schüth
, and
K. J.
Mayrhofer
,
ACS Catal.
2
,
832
(
2012
).
16.
N.
Hodnik
,
C.
Baldizzone
,
G.
Polymeros
,
S.
Geiger
,
J.-P.
Grote
,
S.
Cherevko
,
A.
Mingers
,
A.
Zeradjanin
, and
K. J.
Mayrhofer
,
Nat. Commun.
7
,
13164
(
2016
).
17.
H. A.
Baroody
,
D. B.
Stolar
, and
M. H.
Eikerling
,
Electrochim. Acta
283
,
1006
(
2018
).
18.
P.
Urchaga
,
T.
Kadyk
,
S. G.
Rinaldo
,
A. O.
Pistono
,
J.
Hu
,
W.
Lee
,
C.
Richards
,
M. H.
Eikerling
, and
C. A.
Rice
,
Electrochim. Acta
176
,
1500
(
2015
).
19.
S. G.
Rinaldo
,
J.
Stumper
, and
M.
Eikerling
,
J. Phys. Chem. C
114
,
5773
(
2010
).
20.
X.
Huang
,
Z.
Zhao
,
L.
Cao
,
Y.
Chen
,
E.
Zhu
,
Z.
Lin
,
M.
Li
,
A.
Yan
,
A.
Zettl
, and
Y. M.
Wang
,
Science
348
,
1230
(
2015
).
21.
J.
Zhang
,
K.
Sasaki
,
E.
Sutter
, and
R.
Adzic
,
Science
315
,
220
(
2007
).
22.
V. R.
Stamenkovic
,
B.
Fowler
,
B. S.
Mun
,
G.
Wang
,
P. N.
Ross
,
C. A.
Lucas
, and
N. M.
Marković
,
Science
315
,
493
(
2007
).
23.
L.
Cao
and
T.
Mueller
,
Nano Lett.
16
,
7748
(
2016
).
24.
V.
Tripković
,
I.
Cerri
,
T.
Bligaard
, and
J.
Rossmeisl
,
Catal. Lett.
144
,
380
(
2014
).
25.
X.
Ji
,
K. T.
Lee
,
R.
Holden
,
L.
Zhang
,
J.
Zhang
,
G. A.
Botton
,
M.
Couillard
, and
L. F.
Nazar
,
Nat. Chem.
2
,
286
(
2010
).
26.
M. J.
Eslamibidgoli
,
J.
Huang
,
T.
Kadyk
,
A.
Malek
, and
M.
Eikerling
,
Nano Energy
29
,
334
(
2016
).
27.
S. G.
Rinaldo
,
W.
Lee
,
J.
Stumper
, and
M.
Eikerling
,
Phys. Rev. E
86
,
041601
(
2012
).
28.
R. M.
Darling
and
J. P.
Meyers
,
J. Electrochem. Soc.
150
,
A1523
(
2003
).
29.
F.
Hiraoka
,
Y.
Kohno
,
K.
Matsuzawa
, and
S.
Mitsushima
,
Electrocatalysis
6
,
102
(
2015
).
30.
R. K.
Ahluwalia
,
S.
Arisetty
,
X.
Wang
,
X.
Wang
,
R.
Subbaraman
,
S. C.
Ball
,
S.
DeCrane
, and
D. J.
Myers
,
J. Electrochem. Soc.
160
,
F447
(
2013
).
31.
E. F.
Holby
,
W.
Sheng
,
Y.
Shao-Horn
, and
D.
Morgan
,
Energy Environ. Sci.
2
,
865
(
2009
).
32.
C.
Yu
,
E. F.
Holby
,
R.
Yang
,
M. F.
Toney
,
D.
Morgan
, and
P.
Strasser
,
ChemCatChem
4
,
766
(
2012
).
33.
J. A.
Gilbert
,
N. N.
Kariuki
,
R.
Subbaraman
,
A. J.
Kropf
,
M. C.
Smith
,
E. F.
Holby
,
D.
Morgan
, and
D. J.
Myers
,
J. Am. Chem. Soc.
134
,
14823
(
2012
).
34.
M.
Matsumoto
,
T.
Miyazaki
, and
H.
Imai
,
J. Phys. Chem. C
115
,
11163
(
2011
).
35.
S.
Cherevko
,
A. R.
Zeradjanin
,
G. P.
Keeley
, and
K. J.
Mayrhofer
,
J. Electrochem. Soc.
161
,
H822
(
2014
).
36.
G.
Jerkiewicz
,
G.
Vatankhah
,
J.
Lessard
,
M. P.
Soriaga
, and
Y.-S.
Park
,
Electrochim. Acta
49
,
1451
(
2004
).
37.
L.
Tang
,
B.
Han
,
K.
Persson
,
C.
Friesen
,
T.
He
,
K.
Sieradzki
, and
G.
Ceder
,
J. Am. Chem. Soc.
132
,
596
(
2009
).
38.
R.
Ouyang
,
J.-X.
Liu
, and
W.-X.
Li
,
J. Am. Chem. Soc.
135
,
1760
(
2013
).
39.
Q.
Wan
,
S.
Hu
,
J.
Dai
,
C.
Chen
, and
W.-X.
Li
,
J. Phys. Chem. C
123
,
11020
(
2019
).
40.
S.
Hu
and
W. X.
Li
,
ChemCatChem
10
,
2900
(
2018
).
41.
W.-X.
Li
,
C.
Stampfl
, and
M.
Scheffler
,
Phys. Rev. B
68
,
165412
(
2003
).
42.
W.-X.
Li
,
C.
Stampfl
, and
M.
Scheffler
,
Phys. Rev. Lett.
90
,
256102
(
2003
).
43.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jonsson
,
J. Phys. Chem. B
108
,
17886
(
2004
).
44.
J.
Rossmeisl
,
J. K.
Nørskov
,
C. D.
Taylor
,
M. J.
Janik
, and
M.
Neurock
,
J. Phys. Chem. B
110
,
21833
(
2006
).
45.
Y.-H.
Fang
and
Z.-P.
Liu
,
J. Phys. Chem. C
113
,
9765
(
2009
).
46.
P. N.
Plessow
and
F.
Abild-Pedersen
,
ACS Catal.
6
,
7098
(
2016
).
47.
C. T.
Campbell
,
S. C.
Parker
, and
D. E.
Starr
,
Science
298
,
811
(
2002
).
48.
S. C.
Parker
and
C. T.
Campbell
,
Phys. Rev. B
75
,
035430
(
2007
).
49.
Z.
Zeng
and
J.
Greeley
,
Nano Energy
29
,
369
(
2016
).
50.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
51.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
52.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
53.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
N.
Seriani
,
W.
Pompe
, and
L. C.
Ciacchi
,
J. Phys. Chem. B
110
,
14860
(
2006
).
56.
H. A.
Baroody
,
G.
Jerkiewicz
, and
M. H.
Eikerling
,
J. Chem. Phys.
146
,
144102
(
2017
).
57.
T.
Zhu
,
E. J.
Hensen
,
R. A.
van Santen
,
N.
Tian
,
S.-G.
Sun
,
P.
Kaghazchi
, and
T.
Jacob
,
Phys. Chem. Chem. Phys.
15
,
2268
(
2013
).
58.
E.
Antolini
,
J. Mater. Sci.
38
,
2995
(
2003
).
59.
P.
Ferreira
,
Y.
Shao-Horn
,
D.
Morgan
,
R.
Makharia
,
S.
Kocha
, and
H.
Gasteiger
,
J. Electrochem. Soc.
152
,
A2256
(
2005
).
60.
Y.
Zhou
,
R.
Pasquarelli
,
T.
Holme
,
J.
Berry
,
D.
Ginley
, and
R.
O’Hayre
,
J. Mater. Chem.
19
,
7830
(
2009
).
61.
L.
Vitos
,
A.
Ruban
,
H. L.
Skriver
, and
J.
Kollar
,
Surf. Sci.
411
,
186
(
1998
).
62.
P.
Parthasarathy
and
A. V.
Virkar
,
J. Power Sources
234
,
82
(
2013
).

Supplementary Material

You do not currently have access to this content.