Calcium-molybdate ultrathin films were prepared on a Mo(001) crystal and characterized by means of scanning tunneling microscopy (STM), electron diffraction, photoelectron spectroscopy, and density functional theory (DFT). The films were grown via reactive Ca deposition, followed by a vacuum annealing step to trigger Mo diffusion from the support into the Ca—O ad-layer. A series of crystalline oxide configurations was revealed that evolves from a (3 × 3) to a (4 × 4) and (6 × 6) superstructure with increasing annealing temperature and finally decays to a binary MoOx phase. The stoichiometry of the initial (3 × 3) phase was estimated to CaMo3O6, yet with decreasing Ca concentration at higher temperature. In the search for a suitable structure model for DFT calculations, we have started with a bulk CaMo5O8 configuration that was iteratively modified to match the experimental data. The optimized structure is made of regular sequences of flat-lying and upright standing Mo octahedrons, being separated from each other by Ca2+ ion rows. With decreasing Ca content, the central Mo units grow in size, which explains the observed transition from (3 × 3) to (6 × 6) superstructures upon annealing. The proposed structure model rationalizes the periodicity and corrugation of the regular oxide surface as well as the characteristic domain patterns in the film. Its electronic properties, as deduced from STM conductance spectroscopy, can be correlated with an increasing metallicity of the ad-layer upon annealing. Our work presents a facile pathway to produce high-quality ternary oxide films via interdiffusion of atoms from a suitable metal support into a binary oxide layer.

1.
O.
Muller
and
R.
Rustum
,
The Major Ternary Structural Families
(
Springer
,
Berlin
,
1974
).
2.
R. E.
Schaak
and
T. E.
Mallouk
,
Chem. Mater.
14
,
1455
1471
(
2002
).
3.
Y.
Chen
,
Y.
Sun
,
J.
Peng
 et al.,
Adv. Mater.
30
,
1703487
(
2018
).
4.
M. R.
Castell
,
Surf. Sci.
505
,
1
13
(
2002
).
5.
Z.
Wang
,
F.
Li
,
S.
Meng
,
J.
Zhang
,
E. W.
Plummer
,
U.
Diebold
, and
J.
Guo
,
Phys. Rev. Lett.
111
,
056101
(
2013
).
6.
G.
Pacchioni
and
S.
Valeri
,
Oxide Ultrathin Films: Science and Technology
(
Wiley-VCH
,
Weinheim
,
2011
).
7.
G.
Kresse
,
M.
Schmid
,
E.
Napetschnig
,
M.
Shishkin
,
L.
Kohler
, and
P.
Varga
,
Science
308
,
1440
1442
(
2005
).
8.
H. J.
Freund
,
N.
Nilius
,
T.
Risse
, and
S.
Schauermann
,
Phys. Chem. Chem. Phys.
16
,
8148
8167
(
2014
).
9.
S.
Förster
,
K.
Meinel
,
R.
Hammer
,
M.
Trautmann
, and
W.
Widdra
,
Nature
502
,
215
(
2013
).
10.
L.
Giordano
and
G.
Pacchioni
,
Acc. Chem. Res.
44
,
1244
1252
(
2011
).
11.
S.
Surnev
,
M. G.
Ramsey
, and
F. P.
Netzer
,
Prog. Surf. Sci.
73
,
117
(
2003
).
12.
K.
Heinz
and
L.
Hammer
,
J. Phys.: Condens. Matter
25
,
173001
(
2013
).
13.
J.
Goniakowski
and
C.
Noguera
,
J. Phys. Chem. C
123
,
7898
(
2019
).
14.
W.
Aperador
,
L.
Yate
,
M. J.
Pinzónd
, and
J. C.
Caicedo
,
Results Phys.
9
,
328
336
(
2018
).
15.
S.
Gerhold
,
M.
Riva
,
B.
Yildiz
,
M.
Schmid
, and
U.
Diebold
,
Surf. Sci.
651
,
76
(
2016
).
16.
G.
Niu
,
M. H.
Zoellner
,
T.
Schroeder
,
A.
Schaefer
,
J.-H.
Jhang
,
V.
Zielasek
,
M.
Bäumer
,
H.
Wilkens
,
J.
Wollschläger
,
R.
Olbrich
,
C.
Lammers
, and
M.
Reichling
,
Phys. Chem. Chem. Phys.
17
,
24513
24540
(
2015
).
17.
S.
Pomp
,
D.
Kuhness
,
G.
Barcaro
,
L.
Sementa
,
V.
Mankad
,
A.
Fortunelli
,
M.
Sterrer
,
F. P.
Netzer
, and
S.
Surnev
,
J. Phys. Chem. C
120
,
7629
(
2016
).
18.
F.
Stavale
,
N.
Nilius
, and
H.-J.
Freund
,
Surf. Sci.
609
,
78
84
(
2013
).
19.
C.
Wu
,
M. R.
Castell
,
J.
Goniakowski
, and
C.
Noguera
,
Phys. Rev. B
91
,
155424
(
2015
).
20.
J.-F.
Jerratsch
,
N.
Nilius
,
H.-J.
Freund
,
U.
Martinez
,
L.
Giordano
, and
G.
Pacchioni
,
Phys. Rev. B
80
,
245423
(
2009
).
21.
M. S.
Marshall
,
D. T.
Newell
,
D. J.
Payne
,
R. G.
Egdell
, and
M. R.
Castell
,
Phys. Rev. B
83
,
035410
(
2011
).
22.
F.
Stavale
,
N.
Nilius
, and
H.-J.
Freund
,
New J. Phys.
14
,
033006
(
2012
).
23.
N.
Nilius
,
J. Phys.: Condens. Matter
27
,
303001
(
2015
).
24.
X.
Shao
,
P.
Myrach
,
N.
Nilius
, and
H.-J.
Freund
,
J. Phys. Chem. C
115
,
8784
(
2011
).
25.
G.
Kresse
and
J.
Furthmüller
,
J. Comput. Mater. Sci.
6
,
15
(
1996
).
26.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
27.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
30.
R. F. W.
Bader
,
Chem. Rev.
91
,
893
928
(
1991
).
31.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
32.
H.
Xu
and
K.
Ng
,
Surf. Sci.
356
,
19
(
1996
).
33.
C. D.
Wagner
and
G. E.
Muilenberg
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perking-Elmer Corporation
,
Eden Prairie, Minnesota
,
1979
).
34.
O. Y.
Gorbenko
,
S. V.
Samoilenkov
,
I. E.
Graboy
, and
A. R.
Kaul
,
Chem. Mater.
14
,
4026
(
2002
).
35.
W. S.
Cho
,
M.
Yashima
,
M.
Kakihana
,
A.
Kudo
,
T.
Sakata
, and
M.
Yoshimura
,
J. Am. Ceram. Soc.
80
,
765
(
1997
).
36.
P.
Gougeon
and
P.
Gall
,
Acta Crystallogr., Sect. E: Struct. Rep. Online
58
,
i65
(
2002
).
37.
R.
Dronskowski
,
A.
Simon
, and
W.
Mertin
,
Z. Anorg. Allg. Chem.
602
,
49
63
(
1991
).
38.
P.
Gougeon
,
M.
Potel
, and
M.
Sergent
,
Acta Cryst. C
46
,
1188
1190
(
1990
).
39.
F.
Li
,
G.
Parteder
,
F.
Allegretti
,
C.
Franchini
,
R.
Podloucky
,
S.
Surnev
, and
F. P.
Netzer
,
J. Phys.: Condens. Matter
21
,
134008
(
2009
).
40.
C.
Möller
,
J.
Baretto
,
F.
Stavale
, and
N.
Nilius
,
J. Phys. Chem. C
123
,
7665
7672
(
2019
).
41.
X.
Shao
,
N.
Nilius
,
P.
Myrach
,
H. J.
Freund
,
U.
Martinez
,
S.
Prada
,
L.
Giordano
, and
G.
Pacchioni
,
Phys. Rev. B
83
,
245407
(
2011
).
42.
Y.
Cui
,
N.
Nilius
,
H. J.
Freund
,
S.
Prada
,
L.
Giordano
, and
G.
Pacchioni
,
Phys. Rev. B
88
,
205421
(
2013
).
You do not currently have access to this content.