The electronic structure evolution of deficient halide perovskites with a general formula (A,A′)1+xM1−xX3−x was investigated using the density functional theory. The focus is placed on characterization of changes in the bandgap, band alignment, effective mass, and optical properties of deficient perovskites at various concentrations of defects. We uncover unusual electronic properties of the defect corresponding to a MX vacancy filled with an A′ cation. This defect “repels” electrons and holes producing no trap states and, in moderate quantities (x ≤ 0.1), does not hinder charge transport properties of the material. This behavior is rationalized using a confinement model and provides additional insight to the defect tolerance of halide perovskites.

1.
A.
Leblanc
,
N.
Mercier
,
M.
Allain
,
J.
Dittmer
,
V.
Fernandez
, and
T.
Pauporté
, “
Lead- and iodide-deficient (CH3NH3)PbI3 (d-MAPI): The bridge between 2D and 3D hybrid perovskites
,”
Angew. Chem., Int. Ed.
56
,
16067
16072
(
2017
).
2.
W.
Ke
,
C. C.
Stoumpos
,
M.
Zhu
,
L.
Mao
,
I.
Spanopoulos
,
J.
Liu
,
O. Y.
Kontsevoi
,
M.
Chen
,
D.
Sarma
,
Y.
Zhang
,
M. R.
Wasielewski
, and
M. G.
Kanatzidis
, “
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3
,”
Sci. Adv.
3
,
e1701293
(
2017
).
3.
I.
Spanopoulos
,
W.
Ke
,
C. C.
Stoumpos
,
E. C.
Schueller
,
O. Y.
Kontsevoi
,
R.
Seshadri
, and
M. G.
Kanatzidis
, “
Unraveling the chemical nature of the 3D “hollow” hybrid halide perovskites
,”
J. Am. Chem. Soc.
140
,
5728
5742
(
2018
).
4.
W.
Ke
,
C. C.
Stoumpos
,
I.
Spanopoulos
,
L.
Mao
,
M.
Chen
,
M. R.
Wasielewski
, and
M. G.
Kanatzidis
, “
Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites
,”
J. Am. Chem. Soc.
139
,
14800
14806
(
2017
).
5.
W.
Ke
,
C. C.
Stoumpos
,
I.
Spanopoulos
,
M.
Chen
,
M. R.
Wasielewski
, and
M. G.
Kanatzidis
, “
Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells
,”
ACS Energy Lett.
3
,
1470
1476
(
2018
).
6.
A.
Leblanc
,
N.
Mercier
,
M.
Allain
,
J.
Dittmer
,
T.
Pauporté
,
V.
Fernandez
,
F.
Boucher
,
M.
Kepenekian
, and
C.
Katan
, “
Enhanced stability and band gap tuning of α-[HC(NH2)2]PbI3 hybrid perovskite by large cation integration
,”
ACS Appl. Mater. Interfaces
11
,
20743
20751
(
2019
).
7.
C.
Katan
,
N.
Mercier
, and
J.
Even
, “
Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors
,”
Chem. Rev.
119
,
3140
3192
(
2019
).
8.
C.
Ran
,
J.
Xu
,
W.
Gao
,
C.
Huang
, and
S.
Dou
, “
Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering
,”
Chem. Soc. Rev.
47
,
4581
4610
(
2018
).
9.
F.
Wang
,
S.
Bai
,
W.
Tress
,
A.
Hagfeldt
, and
F.
Gao
, “
Defects engineering for high-performance perovskite solar cells
,”
npj Flexible Electron.
2
,
4581
4610
(
2018
).
10.
J.
Kim
,
S.-H.
Lee
,
J. H.
Lee
, and
K.-H.
Hong
, “
The role of intrinsic defects in methylammonium lead iodide perovskite
,”
J. Phys. Chem. Lett.
5
,
1312
1317
(
2014
).
11.
M. F. N.
Taufique
,
R.
Khanal
,
S.
Choudhury
, and
S.
Banerjee
, “
Impact of iodine antisite (IPb) defects on the electronic properties of the (110) CH3NH3PbI3 surface
,”
J. Chem. Phys.
149
,
164704
(
2018
).
12.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
13.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
14.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
15.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
16.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
18.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
19.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
20.
O.
Rubel
,
A.
Bokhanchuk
,
S. J.
Ahmed
, and
E.
Assmann
, “
Unfolding the band structure of disordered solids: From bound states to high-mobility Kane fermions
,”
Phys. Rev. B
90
,
115202
(
2014
).
21.
L.-W.
Wang
,
L.
Bellaiche
,
S.-H.
Wei
, and
A.
Zunger
, “
Majority representation of alloy electronic states
,”
Phys. Rev. Lett.
80
,
4725
(
1998
).
22.
K.
Momma
and
F.
Izumi
, “
VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
23.
M. I.
Saidaminov
,
J.
Kim
,
A.
Jain
,
R.
Quintero-Bermudez
,
H.
Tan
,
G.
Long
,
F.
Tan
,
A.
Johnston
,
Y.
Zhao
,
O.
Voznyy
, and
E. H.
Sargent
, “
Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air
,”
Nat. Energy
3
,
648
654
(
2018
).
24.
T.
Umebayashi
,
K.
Asai
,
T.
Kondo
, and
A.
Nakao
, “
Electronic structures of lead iodide based low-dimensional crystals
,”
Phys. Rev. B
67
,
155405
(
2003
).
25.
S.
Tao
,
I.
Schmidt
,
G.
Brocks
,
J.
Jiang
,
I.
Tranca
,
K.
Meerholz
, and
S.
Olthof
, “
Absolute energy level positions in tin- and lead-based halide perovskites
,”
Nat. Commun.
10
,
2560
(
2019
).
26.
S.-H.
Wei
and
A.
Zunger
, “
Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends
,”
Phys. Rev. B
60
,
5404
5411
(
1999
).
27.
D.
Gupta
,
N. I.
Goktas
,
A.
Rao
,
R.
LaPierre
, and
O.
Rubel
, “
Stacking defects in GaP nanowires: Electronic structure and optical properties
,”
J. Appl. Phys.
126
,
084306
(
2019
).
28.
T. M.
Miller
,
D. G.
Leopold
,
K. K.
Murray
, and
W. C.
Lineberger
, “
Electron affinities of the alkali halides and the structure of their negative ions
,”
J. Chem. Phys.
85
,
2368
2375
(
1986
).
29.
J. M.
Benson
,
I.
Novak
, and
A. W.
Potts
, “
Photoelectron spectroscopy of the caesium halides using synchrotron radiation
,”
J. Phys. B: At. Mol. Phys.
20
,
6257
6266
(
1987
).
30.
C. H.
Hendon
,
R. X.
Yang
,
L. A.
Burton
, and
A.
Walsh
, “
Assessment of polyanion (BF4 and PF6) substitutions in hybrid halide perovskites
,”
J. Mater. Chem. A
3
,
9067
9070
(
2015
).
31.
U.-G.
Jong
,
C.-J.
Yu
,
Y.-S.
Kim
,
Y.-H.
Kye
, and
C.-H.
Kim
, “
First-principles study on the material properties of the inorganic perovskite Rb1−xCsxPbI3 for solar cell applications
,”
Phys. Rev. B
98
,
125116
(
2018
).
32.
E.
Menéndez-Proupin
,
P.
Palacios
,
P.
Wahnón
, and
J. C.
Conesa
, “
Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite
,”
Phys. Rev. B
90
,
045207
(
2014
).
33.
P.
Umari
,
E.
Mosconi
, and
F.
De Angelis
, “
Relativistic gw calculations on CH3NH3PBI3 and CH3NH3SnI3 perovskites for solar cell applications
,”
Sci. Rep.
4
,
4467
(
2014
).
34.
M. R.
Filip
,
C.
Verdi
, and
F.
Giustino
, “
GW band structures and carrier effective masses of CH3NH3PbI3 and hypothetical perovskites of the type APbI3: A = NH4, PH4, AsH4, and SbH4
,”
J. Phys. Chem. C
119
,
25209
25219
(
2015
).
35.
Y.-S.
Kim
,
M.
Marsman
,
G.
Kresse
,
F.
Tran
, and
P.
Blaha
, “
Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors
,”
Phys. Rev. B
82
,
205212
(
2010
).
36.
A.
Miyata
,
A.
Mitioglu
,
P.
Plochocka
,
O.
Portugall
,
J. T.-W.
Wang
,
S. D.
Stranks
,
H. J.
Snaith
, and
R. J.
Nicholas
, “
Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites
,”
Nat. Phys.
11
,
582
587
(
2015
).
37.
I. B.
Koutselas
,
L.
Ducasse
, and
G. C.
Papavassiliou
, “
Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units
,”
J. Phys.: Condens. Matter
8
,
1217
1227
(
1996
).
38.
C.
Pashartis
and
O.
Rubel
, “
Localization of electronic states in III-V semiconductor alloys: A comparative study
,”
Phys. Rev. Appl.
7
,
064011
(
2017
).
39.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
, “
Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber
,”
Appl. Phys. Lett.
104
,
063903
(
2014
).
40.
J.
Liu
,
Y.
Xue
,
Z.
Wang
,
Z.-Q.
Xu
,
C.
Zheng
,
B.
Weber
,
J.
Song
,
Y.
Wang
,
Y.
Lu
,
Y.
Zhang
, and
Q.
Bao
, “
Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application
,”
ACS Nano
10
,
3536
3542
(
2016
).
41.
C.
Zheng
,
S.
Yu
, and
O.
Rubel
, “
Structural dynamics in hybrid halide perovskites: Bulk Rashba splitting, spin texture, and carrier localization
,”
Phys. Rev. Mater.
2
,
114604
(
2018
).
42.
O.
Rubel
, VASPtools, https://github.com/rubel75/VASPtools.

Supplementary Material

You do not currently have access to this content.