A thorough study of the chemical bonding between intercalated copper and host lattice TiCh2 (Ch = S, Te) was performed. In order to separate the contributions of the copper, titanium, and chalcogen states into the electronic structure of the valence band, photoelectron spectroscopy in nonresonant and resonant (Cu 3p-3d and Ti 2p-3d) excitation modes was used. It is shown that the ionicity of the chemical bond between copper and host lattice is decreased in the TiS2 → TiSe2 → TiTe2 row. In CuxTiS2, copper atoms form the chemical bond with TiCh2 host lattice, while in CuxTiTe2 directly with tellurium atoms.

1.
J. A.
Wilson
and
A. D.
Yoffe
, “
The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties
,”
Adv. Phys.
18
(
73
),
193
335
(
1969
).
2.
S.
Balendhran
,
S.
Walia
,
H.
Nili
,
J. Z.
Ou
,
S.
Zhuiykov
,
R. B.
Kaner
,
S.
Sriram
,
M.
Bhaskaran
, and
K.
Kalantar-zadeh
, “
Two-dimensional molybdenum trioxide and dichalcogenides
,”
Adv. Funct. Mater.
23
(
32
),
3952
3970
(
2013
).
3.
W.
Zhao
,
Z.
Ghorannevis
,
L.
Chu
,
M.
Toh
,
C.
Kloc
,
P.-H.
Tan
, and
G.
Eda
, “
Evolution of electronic structure in atomically thin sheets of WS2 and WSe2
,”
ACS Nano
7
(
1
),
791
797
(
2013
).
4.
X.
Wang
,
L.
Huang
,
X.-W.
Jiang
,
Y.
Li
,
Z.
Wei
, and
J.
Li
, “
Large scale ZrS2 atomically thin layers
,”
J. Mater. Chem. C
4
(
15
),
3143
3148
(
2016
).
5.
F. J.
Di Salvo
,
D. E.
Moncton
, and
J. V.
Waszczak
, “
Electronic properties and superlattice formation in the semimetal TiSe2
,”
Phys. Rev. B
14
(
10
),
4321
4328
(
1976
).
6.
K.
Rossnagel
, “
On the origin of charge-density waves in select layered transition-metal dichalcogenides
,”
J. Phys. Condens. Matter
23
(
21
),
213001
(
2011
).
7.
X.
Xi
,
L.
Zhao
,
Z.
Wang
,
H.
Berger
,
L.
Forró
,
J.
Shan
, and
K. F.
Mak
, “
Strongly enhanced charge-density-wave order in monolayer NbSe2
,”
Nat. Nanotechnol.
10
(
9
),
765
769
(
2015
).
8.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
9.
J.
Yu
,
C.-H.
Lee
,
D.
Bouilly
,
M.
Han
,
P.
Kim
,
M. L.
Steigerwald
,
X.
Roy
, and
C.
Nuckolls
, “
Patterning superatom dopants on transition metal dichalcogenides
,”
Nano Lett.
16
(
5
),
3385
3389
(
2016
).
10.
S.
Hébert
,
W.
Kobayashi
,
H.
Muguerra
,
Y.
Bréard
,
N.
Raghavendra
,
F.
Gascoin
,
E.
Guilmeau
, and
A.
Maignan
, “
From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties
,”
Phys. Status Solidi
210
(
1
),
69
81
(
2013
).
11.
E.
Guilmeau
,
Y.
Bréard
, and
A.
Maignan
, “
Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide
,”
Appl. Phys. Lett.
99
(
5
),
052107
(
2011
).
12.
R.
Bhatt
,
S.
Bhattacharya
,
M.
Patel
,
R.
Basu
,
A.
Singh
,
C.
Sürger
,
M.
Navaneethan
,
Y.
Hayakawa
,
D. K.
Aswal
, and
S. K.
Gupta
, “
Thermoelectric performance of Cu intercalated layered TiSe2 above 300 K
,”
J. Appl. Phys.
114
(
11
),
114509
(
2013
).
13.
F. J.
Di Salvo
and
J. V.
Waszczak
, “
Transport properties and the phase transition in Ti1−xMxSe2 (M = Ta or V)
,”
Phys. Rev. B
17
(
10
),
3801
3807
(
1978
).
14.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
15.
D.
Kraft
,
U.
Weiler
,
Y.
Tomm
,
A.
Thissen
,
A.
Klein
, and
W.
Jaegermann
, “
Alternative back contacts for CdTe solar cells: A photoemission study of the VSe2/CdTe and TiSe2/CdTe interface formation
,”
Thin Solid Films
431-432
,
382
386
(
2003
).
16.
J.
Khan
,
C. M.
Nolen
,
D.
Teweldebrhan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
, “
Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels
,”
Appl. Phys. Lett.
100
(
4
),
043109
(
2012
).
17.
W.
Shi
,
J.
Ye
,
Y.
Zhang
,
R.
Suzuki
,
M.
Yoshida
,
J.
Miyazaki
,
N.
Inoue
,
Y.
Saito
, and
Y.
Iwasa
, “
Superconductivity series in transition metal dichalcogenides by ionic gating
,”
Sci. Rep.
5
(
1
),
12534
(
2015
).
18.
M. S.
Whittingham
, “
Lithium batteries and cathode materials
,”
Chem. Rev.
104
(
10
),
4271
4302
(
2004
).
19.
M.
Pumera
,
Z.
Sofer
, and
A.
Ambrosi
, “
Layered transition metal dichalcogenides for electrochemical energy generation and storage
,”
J. Mater. Chem. A
2
(
24
),
8981
8987
(
2014
).
20.
Y. I.
Joe
,
X. M.
Chen
,
P.
Ghaemi
,
K. D.
Finkelstein
,
G. A.
de la Peña
,
Y.
Gan
,
J. C. T.
Lee
,
S.
Yuan
,
J.
Geck
,
G. J.
MacDougall
 et al, “
Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2
,”
Nat. Phys.
10
(
6
),
421
425
(
2014
).
21.
V.
Podzorov
,
M. E.
Gershenson
,
C.
Kloc
,
R.
Zeis
, and
E.
Bucher
, “
High-mobility field-effect transistors based on transition metal dichalcogenides
,”
Appl. Phys. Lett.
84
(
17
),
3301
3303
(
2004
).
22.
E.
Morosan
,
H. W.
Zandbergen
,
B. S.
Dennis
,
J. W. G.
Bos
,
Y.
Onose
,
T.
Klimczuk
,
A. P.
Ramirez
,
N. P.
Ong
, and
R. J.
Cava
, “
Superconductivity in CuxTiSe2
,”
Nat. Phys.
2
(
8
),
544
550
(
2006
).
23.
T.
Kusawake
,
Y.
Takahashi
,
K.
Ohshima
, and
M.-Y.
Wey
, “
X-ray structural study of in-plane atomic arrangements in the layered compounds Cux TiS2
,”
J. Phys. Condens. Matter
11
(
32
),
6121
6128
(
1999
).
24.
A. A.
Titov
,
A. I.
Merentsov
,
A. E.
Kar’kin
,
A. N.
Titov
, and
V. V.
Fedorenko
, “
Structure and properties of the intercalation compound Cux TiSe2
,”
Phys. Solid State
51
(
2
),
230
233
(
2009
).
25.
A. A.
Titov
,
A. N.
Titov
, and
S. G.
Titova
, “
Retrograde solubility in the Cu-TiTe2 system
,”
Phys. Solid State
56
(
10
),
2087
2091
(
2014
).
26.
E. G.
Shkvarina
,
A. A.
Titov
,
A. A.
Doroschek
,
A. S.
Shkvarin
,
D. V.
Starichenko
,
J. R.
Plaisier
,
L.
Gigli
, and
A. N.
Titov
, “
2D-3D transition in Cu–TiS2 system
,”
J. Chem. Phys.
147
(
4
),
044712
(
2017
).
27.
R. J.
Bouchard
, “
Spinel to defect NiAs structure transformation
,”
Mater. Res. Bull.
2
(
4
),
459
464
(
1967
).
28.
G.
Blasse
, “
Antiferromagnetism of CoRh2S4
,”
Phys. Lett.
19
(
2
),
110
(
1965
).
29.
T.
Kusawake
,
Y.
Takahashi
, and
K.
Ohshima
, “
Preparation and characterization of single crystals of intercalation compounds CuxTiS2
,”
Mater. Res. Bull.
33
(
7
),
1009
1014
(
1998
).
30.
N. N.
Vershinin
,
Y. I.
Malov
,
S. E.
Nadkhina
, and
E. A.
Ukshe
, “
Electrochemical injection of copper into titanium disulfide
,” in
Soviet Electrochemistry
(
Plenum Publishing Corporation; Consultants Bureau
,
New York, NY
,
1983
), pp.
509
511
.
31.
A. A.
Titov
,
E. G.
Shkvarina
,
A. I.
Merentsov
,
A. A.
Doroshek
,
A. S.
Shkvarin
,
Y. M.
Zhukov
,
A. G.
Rybkin
,
S. V.
Pryanichnikov
,
S. A.
Uporov
, and
A. N.
Titov
, “
Synthesis, structure and properties of the layered Cux TiS2 compounds
,”
J. Alloys Compd.
750
,
42
54
(
2018
).
32.
D.
Degenhakdt
,
P.
Rabe
, and
R.
Haensel
, “
EXAFS investigations of TiS2 and CuxTiS2 single crystals (x = 0.35, 0.4)
,”
Phys. Status Solidi
95
(
2
),
439
445
(
1986
).
33.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
M. V.
Yablonskikh
,
A. I.
Merentsov
,
E. G.
Shkvarina
,
A. A.
Titov
,
Y. M.
Zhukov
, and
A. N.
Titov
, “
The electronic structure formation of CuxTiSe2 in a Wide range (0.04 < x < 0.8) of copper concentration
,”
J. Chem. Phys.
144
(
7
),
074702
(
2016
).
34.
D.
Qian
,
D.
Hsieh
,
L.
Wray
,
Y.
Xia
,
R. J.
Cava
,
E.
Morosan
, and
M. Z.
Hasan
, “
Evolution of low-lying states in a doped CDW superconductor CuxTiSe2
,”
Physica B
403
(
5-9
),
1002
1004
(
2008
).
35.
H.
Barath
,
M.
Kim
,
J. F.
Karpus
,
S. L.
Cooper
,
P.
Abbamonte
,
E.
Fradkin
,
E.
Morosan
, and
R. J.
Cava
, “
Quantum and classical mode softening near the charge-density-wave–superconductor transition of CuxTiSe2
,”
Phys. Rev. Lett.
100
(
10
),
106402
(
2008
).
36.
J. F.
Zhao
,
H. W.
Ou
,
G.
Wu
,
B. P.
Xie
,
Y.
Zhang
,
D. W.
Shen
,
J.
Wei
,
L. X.
Yang
,
J. K.
Dong
,
M.
Arita
 et al, “
Evolution of the electronic structure of 1T−CuxTiSe2
,”
Phys. Rev. Lett.
99
(
14
),
146401
(
2007
).
37.
S. Y.
Li
,
G.
Wu
,
X. H.
Chen
, and
L.
Taillefer
, “
Single-gap s-wave superconductivity near the charge-density-wave quantum critical point in CuxTiSe2
,”
Phys. Rev. Lett.
99
(
10
),
107001
(
2007
).
38.
A. M.
Novello
,
M.
Spera
,
A.
Scarfato
,
A.
Ubaldini
,
E.
Giannini
,
D. R.
Bowler
, and
C.
Renner
, “
Stripe and short range order in the charge density wave of 1T-CuxTiSe2
,”
Phys. Rev. Lett.
118
(
1
),
017002
(
2017
).
39.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
N. A.
Skorikov
,
A. A.
Titov
, and
A. N.
Titov
, “
Resonant photoemission and absorption spectroscopy of the CuxTiSe2 compound
,”
J. Exp. Theor. Phys.
114
(
2
),
324
328
(
2012
).
40.
T.
Kusawake
,
Y.
Takahashi
,
M. Y.
Wey
, and
K.
Ohshima
, “
X-ray structure analysis and electron density distributions of the layered compounds CuxTiS2
,”
J. Phys. Condens. Matter
13
(
44
),
9913
9922
(
2001
).
41.
Z. Y.
Wu
,
F.
Lemoigno
,
P.
Gressier
,
G.
Ouvrard
,
P.
Moreau
,
J.
Rouxel
, and
C. R.
Natoli
, “
Experimental and theoretical studies of the electronic structure of TiS2
,”
Phys. Rev. B
54
(
16
),
R11009
R11013
(
1996
).
42.
C. M.
Fang
,
R. A.
de Groot
, and
C.
Haas
, “
Bulk and surface electronic structure of 1T−TiS2 and 1T−TiSe2
,”
Phys. Rev. B
56
(
8
),
4455
4463
(
1997
).
43.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
N. A.
Skorikov
,
M. V.
Yablonskikh
,
A. I.
Merentsov
,
E. G.
Shkvarina
, and
A. N.
Titov
, “
Electronic structure of titanium dichalcogenides TiX2 (X = S, Se, Te)
,”
J. Exp. Theor. Phys.
114
(
1
),
150
156
(
2012
).
44.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
N. A.
Skorikov
,
M. V.
Yablonskikh
,
A. I.
Merentsov
,
E. G.
Shkvarina
, and
A. N.
Titov
, “
Resonance photoelectron spectroscopy of TiX2 (X = S, Se, Te) titanium dichalcogenides
,”
J. Exp. Theor. Phys.
115
(
5
),
798
804
(
2012
).
45.
G.
Monney
,
C.
Monney
,
B.
Hildebrand
,
P.
Aebi
, and
H.
Beck
, “
Impact of electron-hole correlations on the 1T−TiSe2 electronic structure
,”
Phys. Rev. Lett.
114
(
8
),
086402
(
2015
).
46.
S.
Negishi
,
H.
Negishi
,
K.
Shimada
,
X. Y.
Cui
,
M.
Higashiguchi
,
M.
Nakatake
,
M.
Arita
,
H.
Namatame
,
M.
Taniguchi
,
A.
Ohnishi
 et al, “
Photoemission study on electronic structure of TiSe2
,”
Physica B
383
(
1
),
155
157
(
2006
).
47.
R.
Claessen
,
R. O.
Anderson
,
J. W.
Allen
,
C. G.
Olson
,
C.
Janowitz
,
W. P.
Ellis
,
S.
Harm
,
M.
Kalning
,
R.
Manzke
, and
M.
Skibowski
, “
Fermi-liquid line shapes measured by angle-resolved photoemission spectroscopy on 1-T-TiTe2
,”
Phys. Rev. Lett.
69
(
5
),
808
811
(
1992
).
48.
V.
Grasso
,
Electronic Structure and Electronic Transitions in Layered Materials
(
Springer Science & Business Media
,
2012
), Vol. 7.
49.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
A. I.
Merentsov
,
E. G.
Shkvarina
,
E. A.
Suslov
,
M. S.
Brezhestovsky
,
O. V.
Bushkova
, and
A. N.
Titov
, “
Chemical bond in FexTiSe2 intercalation compounds: Dramatic influence of Fe concentration
,”
RSC Adv.
6
(
108
),
106527
106539
(
2016
).
50.
H. P. B.
Rimmington
,
A. A.
Balchin
, and
B. K.
Tanner
, “
Nearly perfect single crystals of layer compounds grown by iodine vapour-transport techniques
,”
J. Cryst. Growth
15
(
1
),
51
56
(
1972
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
52.
See http://elk.sourceforge.net/ for ELK—open access code.
53.
M. V.
Yablonskikh
,
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
N. A.
Skorikov
, and
A. N.
Titov
, “
Resonant photoemission at the L3 absorption edge of Mn and Ti and the electronic structure of 1T-Mn0.2TiSe2
,”
J. Phys. Condens. Matter
24
(
4
),
045504
(
2012
).
54.
H.
Martinez
,
C.
Auriel
,
D.
Gonbeau
,
M.
Loudet
, and
G.
Pfister-Guillouzo
, “
Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air
,”
Appl. Surf. Sci.
93
(
3
),
231
235
(
1996
).
55.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
A. I.
Merentsov
,
Y. M.
Zhukov
,
A. A.
Titov
,
E. G.
Shkvarina
, and
A. N.
Titov
, “
Electronic structure of NixTiSe2(0.05 ≤ x ≤ 0.46) compounds with ordered and disordered Ni
,”
Phys. Chem. Chem. Phys.
19
(
6
),
4500
(
2017
).
56.
J. J.
Yeh
and
I.
Lindau
, “
Atomic subshell photoionization cross sections and asymmetry parameters: 1 Z 103
,”
Atomic Data Nucl. Data Tables
32
,
1
155
(
1985
).
57.
A.
Kay
,
E.
Arenholz
,
S.
Mun
,
F. J. G.
de Abajo
,
C. S.
Fadley
,
R.
Denecke
,
Z.
Hussain
, and
M. A. V.
Hove
, “
Multi-atom resonant photoemission: A method for determining near-neighbor atomic identities and bonding
,”
Science
281
(
5377
),
679
683
(
1998
).
58.
R. Z.
Bachrach
,
Synchrotron Radiation Research: Advances in Surface and Interface Science Techniques
(
Springer Science & Business Media
,
2012
), Vol. 1.
59.
J.-E.
Rubensson
,
J.
Lüning
,
S.
Eisebitt
, and
W.
Eberhardt
, “
It’s always a one-step process
,”
Appl. Phys. A
65
(
2
),
91
96
(
1997
).
60.
N.
Mårtensson
,
M.
Weinelt
,
O.
Karis
,
M.
Magnuson
,
N.
Wassdahl
,
A.
Nilsson
,
J.
Stöhr
, and
M.
Samant
, “
Coherent and incoherent processes in resonant photoemission
,”
Appl. Phys. A
65
(
2
),
159
167
(
1997
).
61.
Y. M.
Yarmoshenko
,
A. S.
Shkvarin
,
M. V.
Yablonskikh
,
A. I.
Merentsov
, and
A. N.
Titov
, “
Localization of charge carriers in layered crystals MexTiSe2 (Me = Cr, Mn, Cu) studied by the resonant photoemission
,”
J. Appl. Phys.
114
(
13
),
133704
(
2013
).
62.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
A. I.
Merentsov
,
I.
Píš
,
F.
Bondino
,
E. G.
Shkvarina
, and
A. N.
Titov
, “
Guest–host chemical bonding and possibility of ordering of intercalated metals in transition-metal dichalcogenides
,”
Inorg. Chem.
57
(
9
),
5544
5553
(
2018
).
You do not currently have access to this content.