Accurate theoretical methods are needed to correctly describe adsorption on solid surfaces or in porous materials. The random phase approximation (RPA) with singles corrections scheme and the second order Møller-Plesset perturbation theory (MP2) are two schemes, which offer high accuracy at affordable computational cost. However, there is little knowledge about their applicability and reliability for different adsorbates and surfaces. Here, we calculate adsorption energies of seven different molecules in zeolite chabazite to show that RPA with singles corrections is superior to MP2, not only in terms of accuracy but also in terms of computer time. Therefore, RPA with singles is a suitable scheme for obtaining highly accurate adsorption energies in porous materials and similar systems.

1.
J.
Carrasco
,
A.
Michaelides
,
M.
Forster
,
S.
Haq
,
R.
Raval
, and
A.
Hodgson
, “
A one-dimensional ice structure built from pentagons
,”
Nat. Mater.
8
,
427
(
2009
).
2.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev. B
136
,
B864
(
1964
).
3.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
4.
C.
Tuma
and
J.
Sauer
, “
Treating dispersion effects in extended systems by hybrid MP2:DFT calculations-protonation of isobutene in zeolite ferrierite
,”
Phys. Chem. Chem. Phys.
8
,
3955
3965
(
2006
).
5.
L.
Hammerschmidt
,
C.
Müler
, and
B.
Paulus
, “
Electron correlation contribution to the physisorption of CO on MgF2(110)
,”
J. Chem. Phys.
136
,
124117
(
2012
).
6.
S. D.
Chakarova-Käck
,
E.
Schröder
,
B. I.
Lundqvist
, and
D. C.
Langreth
, “
Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite
,”
Phys. Rev. Lett.
96
,
146107
(
2006
).
7.
P.
Sony
,
P.
Puschnig
,
D.
Nabok
, and
C.
Ambrosch-Draxl
, “
Importance of van der Waals interaction for organic molecule-metal junctions: Adsorption of thiophene on Cu(110) as a prototype
,”
Phys. Rev. Lett.
99
,
176401
(
2007
).
8.
K.
Berland
,
T. L.
Einstein
, and
P.
Hylgaard
, “
Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111)
,”
Phys. Rev. B
80
,
155431
(
2009
).
9.
S.
Gautier
,
S. N.
Steinmann
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
, “
Molecular adsorption at Pt(111). How accurate are DFT functionals?
,”
Phys. Chem. Chem. Phys.
17
,
28921
28930
(
2015
).
10.
Y. S.
Al-Hamdani
,
M.
Ma
,
D.
Alfè
,
O. A.
von Lilienfeld
, and
A.
Michaelides
, “
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
,”
J. Chem. Phys.
142
,
181101
(
2015
).
11.
A.
Zen
,
L. M.
Roch
,
S. J.
Cox
,
X. L.
Hu
,
S.
Sorella
,
D.
Alfè
, and
A.
Michaelides
, “
Toward accurate adsorption energetics on clay surfaces
,”
J. Phys. Chem. C
120
,
26402
26413
(
2016
).
12.
M.
Dubecký
,
R.
Derian
,
P.
Jurečka
,
L.
Mitas
,
P.
Hobza
, and
M.
Otyepka
, “
Quantum Monte Carlo for noncovalent interactions: An efficient protocol attaining benchmark accuracy
,”
Phys. Chem. Chem. Phys.
16
,
20915
20923
(
2014
).
13.
Y. S.
Al-Hamdani
,
M.
Rossi
,
D.
Alfè
,
T.
Tsatsoulis
,
B.
Ramberger
,
J. G.
Brandenburg
,
A.
Zen
,
G.
Kresse
,
A.
Grüneis
,
A.
Tkatchenko
, and
A.
Michaelides
, “
Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy
,”
J. Chem. Phys.
147
,
044710
(
2017
).
14.
J. G.
Brandenburg
,
A.
Zen
,
M.
Fitzner
,
B.
Ramberger
,
G.
Kresse
,
T.
Tsatsoulis
,
A.
Grüneis
,
A.
Michaelides
, and
D.
Alfè
, “
Physisorption of water on graphene: Sub-chemical accuracy from many-body electronic structure methods
,”
J. Phys. Chem. Lett.
10
,
358
368
(
2019
).
15.
M.
Dubecký
,
P.
Jurečka
,
L.
Mitas
,
M.
Ditte
, and
R.
Fanta
, “
Toward accurate hydrogen bonds by scalable quantum Monte Carlo
,”
J. Chem. Theory Comput.
15
,
3552
3557
(
2019
).
16.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
, “
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
,”
Phys. Rev. B
93
,
241118
(
2016
).
17.
F.
Hummel
,
T.
Tsatsoulis
, and
A.
Grüneis
, “
Low rank factorization of the Coulomb integrals for periodic coupled cluster theory
,”
J. Chem. Phys.
146
,
124105
(
2017
).
18.
I. Y.
Zhang
and
A.
Grüneis
, “
Coupled cluster theory in materials science
,”
Front. Mater.
6
,
123
(
2019
).
19.
N.
Lopez
,
F.
Illas
,
N.
Rösch
, and
G.
Pacchioni
, “
Adhesion energy of Cu atoms on the MgO(001) surface
,”
J. Chem. Phys.
110
,
4873
4879
(
1999
).
20.
C.
Di Valentin
,
G.
Pacchioni
,
T.
Bredow
,
D.
Dominguez-Ariza
, and
F.
Illas
, “
Bonding of NO to NiO(100) and NixMg1−xO(100) surfaces: A challenge for theory
,”
J. Chem. Phys.
117
,
2299
2306
(
2002
).
21.
A.
Kubas
,
D.
Berger
,
H.
Oberhofer
,
D.
Maganas
,
K.
Reuter
, and
F.
Neese
, “
Surface adsorption energetics studied with “gold standard” wave-function-based ab initio methods: Small-molecule binding to TiO2(110)
,”
J. Phys. Chem. Lett.
7
,
4207
4212
(
2016
).
22.
A. D.
Boese
and
J.
Sauer
, “
Accurate adsorption energies for small molecules on oxide surfaces: CH4/MgO(001) and C2H6/MgO(001)
,”
J. Comput. Chem.
37
,
2374
2385
(
2016
).
23.
F.
Göltl
,
A.
Grüneis
,
T.
Bučko
, and
J.
Hafner
, “
Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory
,”
J. Chem. Phys.
137
,
114111
(
2012
).
24.
J.
Harl
and
G.
Kresse
, “
Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory
,”
Phys. Rev. B
77
,
045136
(
2008
).
25.
D.
Lu
,
Y.
Li
,
D.
Rocca
, and
G.
Galli
, “
Ab initio calculation of van der Waals bonded molecular crystals
,”
Phys. Rev. Lett.
102
,
206411
(
2009
).
26.
J.
Harl
and
G.
Kresse
, “
Accurate bulk properties from approximate many-body techniques
,”
Phys. Rev. Lett.
103
,
056401
(
2010
).
27.
H.-V.
Nguyen
and
S.
de Gironcoli
, “
Efficient calculation of exact exchange and RPA correlation energies in the adiabatic-connection fluctuation-dissipation theory
,”
Phys. Rev. B
79
,
205114
(
2009
).
28.
T.
Olsen
,
J.
Yan
,
J. J.
Mortensen
, and
K. S.
Thygesen
, “
Dispersive and covalent interactions between graphene and metal surfaces from the random phase approximation
,”
Phys. Rev. Lett.
107
,
156401
(
2011
).
29.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Making the random phase approximation to electronic correlation accurate
,”
J. Chem. Phys.
131
,
154115
(
2009
).
30.
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
, and
M.
Scheffler
, “
Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks
,”
Phys. Rev. B
88
,
035120
(
2013
).
31.
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids
,”
Phys. Rev. B
81
,
115126
(
2010
).
32.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
, “
Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation
,”
J. Chem. Phys.
136
,
134102
(
2012
).
33.
J. A.
Garrido Torres
,
B.
Ramberger
,
H. A.
Früchtl
,
R.
Schaub
, and
G.
Kresse
, “
Adsorption energies of benzene on close packed transition metal surfaces using the random phase approximation
,”
Phys. Rev. Mater.
1
,
060803
(
2017
).
34.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
, “
Efficient self-consistent treatment of electron correlation within the random phase approximation
,”
J. Chem. Phys.
139
,
084113
(
2013
).
35.
T.
Olsen
and
K. S.
Thygesen
, “
Beyond the random phase approximation: Improved description of short-range correlation by a renormalized adiabatic local density approximation
,”
Phys. Rev. B
88
,
115131
(
2013
).
36.
T.
Olsen
and
K. S.
Thygesen
, “
Accurate ground-state energies of solids and molecules from time-dependent density-functional theory
,”
Phys. Rev. Lett.
112
,
203001
(
2014
).
37.
P.
Bleiziffer
,
M.
Krug
, and
A.
Görling
, “
Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel
,”
J. Chem. Phys.
142
,
244108
(
2015
).
38.
X.
Ren
,
A.
Tkatchenko
,
P.
Rinke
, and
M.
Scheffler
, “
Beyond the random-phase approximation for the electron correlation energy: The importance of single excitations
,”
Phys. Rev. Lett.
106
,
153003
(
2011
).
39.
J.
Klimeš
,
M.
Kaltak
,
E.
Maggio
, and
G.
Kresse
, “
Singles correlation energy contributions in solids
,”
J. Chem. Phys.
143
,
102816
(
2015
).
40.
J.
Klimeš
, “
Lattice energies of molecular solids from the random phase approximation with singles corrections
,”
J. Chem. Phys.
145
,
094506
(
2016
).
41.
A.
Zen
,
J. G.
Brandenburg
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
, and
A.
Michaelides
, “
Fast and accurate quantum Monte Carlo for molecular crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
1724
1729
(
2018
).
42.
F.
Göltl
and
J.
Hafner
, “
Alkane adsorption in Na-exchanged chabazite: The influence of dispersion forces
,”
J. Chem. Phys.
134
,
064102
(
2011
).
43.
T.
Bučko
,
S.
Lebègue
,
J.
Hafner
, and
J. G.
Ángyán
, “
Improved density dependent correction for the description of london dispersion forces
,”
J. Chem. Theory Comput.
9
,
4293
(
2013
).
44.
J.
Shang
,
G.
Li
,
R.
Singh
,
P.
Xiao
,
D.
Danaci
,
J. Z.
Liu
, and
P. A.
Webley
, “
Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: A combination of van der Waals density functional theory calculations and experiment
,”
J. Chem. Phys.
140
,
084705
(
2014
).
45.
T.
Bučko
,
S.
Lebègue
,
J. G.
Ángyán
, and
J.
Hafner
, “
Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning
,”
J. Chem. Phys.
141
,
034114
(
2014
).
46.
C.
Tuma
and
J.
Sauer
, “
Quantum chemical ab initio prediction of proton exchange barriers between CH4 and different H-zeolites
,”
J. Chem. Phys.
143
,
102810
(
2015
).
47.
M.
Rubeš
,
M.
Trachta
,
E.
Koudelková
,
R.
Bulánek
,
J.
Klimeš
,
P.
Nachtigall
, and
O.
Bludský
, “
Temperature dependence of carbon monoxide adsorption on a high-silica H-FER zeolite
,”
J. Phys. Chem. C
122
,
26088
26095
(
2018
).
48.
F.
Furche
, “
Molecular tests of the random phase approximation to the exchange-correlation energy functional
,”
Phys. Rev. B
64
,
195120
(
2001
).
49.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Van der Waals density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
50.
G.
Román-Pérez
and
J. M.
Soler
, “
Efficient implementation of a van der Waals density functional: Application to double-wall carbon nanotubes
,”
Phys. Rev. Lett.
103
,
096102
(
2009
).
51.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the van der Waals density functional
,”
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
52.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
53.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
54.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
55.
G.
Kresse
and
J.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
56.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
, “
Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set
,”
J. Chem. Phys.
130
,
184103
(
2009
).
57.
A.
Grüneis
,
M.
Marsman
, and
G.
Kresse
, “
Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties
,”
J. Chem. Phys.
133
,
074107
(
2010
).
58.
T.
Schäfer
,
B.
Ramberger
, and
G.
Kresse
, “
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
,”
J. Chem. Phys.
146
,
104101
(
2017
).
59.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Linear optical properties in the projector-augmented wave methodology
,”
Phys. Rev. B
73
,
045112
(
2006
).
60.
K.
Liao
and
A.
Grüneis
, “
Communication: Finite size correction in periodic coupled cluster theory calculations of solids
,”
J. Chem. Phys.
145
,
141102
(
2016
).
61.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
, “
Low scaling algorithms for the random phase approximation: Imaginary time and Laplace transformations
,”
J. Chem. Theory Comput.
10
,
2498
(
2014
).
62.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
, “
A cubic scaling algorithm for the random phase approximation: Defect calculations for large Si model structures
,”
Phys. Rev. B
90
,
054115
(
2014
).
63.
J.
Klimeš
,
M.
Kaltak
, and
G.
Kresse
, “
Predictive GW calculations using plane waves and pseudopotentials
,”
Phys. Rev. B
90
,
075125
(
2014
).
64.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
65.
A.
Gulans
, “
Towards numerically accurate many-body perturbation theory: Short-range correlation effects
,”
J. Chem. Phys.
141
,
164127
(
2014
).
66.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
, “
Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12
,”
J. Chem. Phys.
132
,
231102
(
2010
).
67.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
68.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized auxiliary basis sets for explicitly correlated methods
,”
J. Chem. Phys.
129
,
184108
(
2008
).
69.
R. A.
Bachorz
,
F. A.
Bischoff
,
A.
Glöß
,
C.
Hättig
,
S.
Höfener
,
W.
Klopper
, and
D. P.
Tew
, “
The MP2-F12 method in the TURBOMOLE program package
,”
J. Comput. Chem.
32
,
2492
2513
(
2011
).
70.
G.
Schmitz
,
C.
Hättig
, and
D. P.
Tew
, “
Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems
,”
Phys. Chem. Chem. Phys.
16
,
22167
22178
(
2014
).
71.
G.
Schmitz
and
C.
Hättig
, “
Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques
,”
J. Chem. Phys.
145
,
234107
(
2016
).
72.
M.
Modrzejewski
,
S.
Yourdkhani
, and
J.
Klimes
, “
Random phase approximation applied to many-body noncovalent systems
,”
J. Chemical Theory Comput.
(to be published); e-print arXiv:1909.13353 [physics.chem-ph] (
2019
).
73.
H.
Eshuis
and
F.
Furche
, “
Basis set convergence of molecular correlation energy differences within the random phase approximation
,”
J. Chem. Phys.
136
,
084105
(
2012
).
74.
T.
Olsen
and
K. S.
Thygesen
, “
Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding
,”
Phys. Rev. B
87
,
075111
(
2013
).
75.
G.
Piccini
,
M.
Alessio
,
J.
Sauer
,
Y.
Zhi
,
Y.
Liu
,
R.
Kolvenbach
,
A.
Jentys
, and
J. A.
Lercher
, “
Accurate adsorption thermodynamics of small alkanes in zeolites. Ab initio theory and experiment for H-chabazite
,”
J. Phys. Chem. C
119
,
6128
6137
(
2015
).
76.
R.
Arletti
,
E.
Fois
,
L.
Gigli
,
G.
Vezzalini
,
S.
Quartieri
, and
G.
Tabacchi
, “
Irreversible conversion of a water–ethanol solution into an organized two-dimensional network of alternating supramolecular units in a hydrophobic zeolite under pressure
,”
Angew. Chem., Int. Ed.
56
,
2105
2109
(
2017
).
77.
M.
Fischer
, “
Template effects on the pressure-dependent behavior of chabazite-type fluoroaluminophosphates: A computational approach
,”
Phys. Chem. Miner.
46
,
385
401
(
2019
).
78.
F.
Hummel
,
A.
Grüneis
,
G.
Kresse
, and
P.
Ziesche
, “
Screened exchange corrections to the random phase approximation from many-body perturbation theory
,”
J. Chem. Theory Comput.
15
,
3223
3236
(
2019
).
79.
M.
Rubeš
,
M.
Trachta
,
E.
Koudelková
,
R.
Bulánek
,
V.
Kasneryk
, and
O.
Bludský
, “
Methane adsorption in ADOR zeolites: A combined experimental and DFT/CC study
,”
Phys. Chem. Chem. Phys.
19
,
16533
16540
(
2017
).
80.
H. V.
Thang
,
L.
Grajciar
,
P.
Nachtigall
,
O.
Bludský
,
C. O.
Areán
,
E.
Frýdová
, and
R.
Bulánek
, “
Adsorption of CO2 in FAU zeolites: Effect of zeolite composition
,”
Catal. Today
227
,
50
(
2014
), molecular Sieves and Catalysis: Selected papers from CIS-5 Conference.
81.
D.
Rocca
,
A.
Dixit
,
M.
Badawi
,
S.
Lebègue
,
T.
Gould
, and
T.
Bučko
, “
Bridging molecular dynamics and correlated wave-function methods for accurate finite-temperature properties
,”
Phys. Rev. Mater.
3
,
040801
(
2019
).
82.
G.
Piccini
,
M.
Alessio
, and
J.
Sauer
, “
Ab initio study of methanol and ethanol adsorption on Brønsted sites in zeolite H-MFI
,”
Phys. Chem. Chem. Phys.
20
,
19964
19970
(
2018
).
83.
O.
Bludský
,
M.
Rubeš
,
P.
Soldán
, and
P.
Nachtigal
, “
Investigation of the benzene-dimer potential energy surface: DFT/CCSD(T) correction scheme
,”
J. Chem. Phys.
128
,
114102
(
2008
).
84.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
85.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
(
2011
).
86.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
87.
F.
Göltl
and
J.
Hafner
, “
Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates
,”
J. Chem. Phys.
136
,
064503
(
2012
).
88.
M.
Cutini
,
B.
Civalleri
, and
P.
Ugliengo
, “
Cost-effective quantum mechanical approach for predicting thermodynamic and mechanical stability of pure-silica zeolites
,”
ACS Omega
4
,
1838
1846
(
2019
).
89.
M. R.
Hudson
,
W. L.
Queen
,
J. A.
Mason
,
D. W.
Fickel
,
R. F.
Lobo
, and
C. M.
Brown
, “
Unconventional, highly selective CO2 adsorption in zeolite SSZ-13
,”
J. Am. Chem. Soc.
134
,
1970
1973
(
2012
).
90.
T. D.
Pham
,
Q.
Liu
, and
R. F.
Lobo
, “
Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites
,”
Langmuir
29
,
832
839
(
2013
).
91.
A. S.
Hyla
,
H.
Fang
,
S. E.
Boulfelfel
,
G.
Muraro
,
C.
Paur
,
K.
Strohmaier
,
P. I.
Ravikovitch
, and
D. S.
Sholl
, “
Significant temperature dependence of the isosteric heats of adsorption of gases in zeolites demonstrated by experiments and molecular simulations
,”
J. Phys. Chem. C
123
,
20405
20412
(
2019
).
92.
T.
Bučko
,
L.
Benco
,
J.
Hafner
, and
J. G.
Ángyán
, “
Monomolecular cracking of propane over acidic chabazite: An ab initio molecular dynamics and transition path sampling study
,”
J. Catal.
279
,
220
228
(
2011
).
93.
B.
Ramberger
,
T.
Schäfer
, and
G.
Kresse
, “
Analytic interatomic forces in the random phase approximation
,”
Phys. Rev. Lett.
118
,
106403
(
2017
).
94.
B.
Chehaibou
,
M.
Badawi
,
T.
Bučko
,
T.
Bazhirov
, and
D.
Rocca
, “
Computing RPA adsorption enthalpies by machine learning thermodynamic perturbation theory
,”
J. Chem. Theory Comput.
15
,
6333
6342
(
2019
).
95.
H.
Fang
,
P.
Kamakoti
,
P. I.
Ravikovitch
,
M.
Aronson
,
C.
Paur
, and
D. S.
Sholl
, “
First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites
,”
Phys. Chem. Chem. Phys.
15
,
12882
(
2013
).
96.
B.
Xiao
,
J.
Sun
,
A.
Ruzsinszky
,
J.
Feng
, and
J. P.
Perdew
, “
Structural phase transitions in Si and SiO2 crystals via the random phase approximation
,”
Phys. Rev. B
86
,
094109
(
2012
).
97.
M.
Fischer
,
W. J.
Kim
,
M.
Badawi
, and
S.
Lebègue
, “
Benchmarking the performance of approximate van der Waals methods for the structural and energetic properties of SiO2 and AlPO4 frameworks
,”
J. Chem. Phys.
150
,
094102
(
2019
).
98.
J.
Zhang
,
R.
Singh
, and
P. A.
Webley
, “
Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture
,”
Microporous Mesoporous Mater.
111
,
478
487
(
2008
).
99.
J. F. M.
Denayer
,
L. I.
Devriese
,
S.
Couck
,
J.
Martens
,
R.
Singh
,
P. A.
Webley
, and
G. V.
Baron
, “
Cage and window effects in the adsorption of n-alkanes on chabazite and SAPO-34
,”
J. Phys. Chem. C
112
,
16593
16599
(
2008
).
100.
J.
Shang
,
G.
Li
,
R.
Singh
,
Q.
Gu
,
K. M.
Nairn
,
T. J.
Bastow
,
N.
Medhekar
,
C. M.
Doherty
,
A. J.
Hill
,
J. Z.
Liu
, and
P. A.
Webley
, “
Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites
,”
J. Am. Chem. Soc.
134
,
19246
19253
(
2012
).
101.
F.-X.
Coudert
and
D.
Kohen
, “
Molecular insight into CO2 “trapdoor” adsorption in zeolite Na-RHO
,”
Chem. Mat.
29
,
2724
2730
(
2017
).
102.
J.
Wieme
,
K.
Lejaeghere
,
G.
Kresse
, and
V.
Van Speybroeck
, “
Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks
,”
Nat. Commun.
9
,
4899
(
2018
).

Supplementary Material

You do not currently have access to this content.