The intentional incorporation of transition metal impurities into colloidal semiconductor nanocrystals allows an extension of the host material’s functionality. While dopant incorporation has been extensively investigated in zero-dimensional quantum dots, the substitutional replacement of atoms in two-dimensional (2D) nanostructures by magnetic dopants has been reported only recently. Here, we demonstrate the successful incorporation of Co2+ ions into the shell of CdSe/CdS core/shell nanoplatelets, using these ions (i) as microscopic probes for gaining distinct structural insights and (ii) to enhance the magneto-optical functionality of the host material. Analyzing interatomic Co2+ ligand field transitions, we conclude that Co2+ is incorporated into lattice sites of the CdS shell, and effects such as diffusion of dopants into the CdSe core or diffusion of the dopants out of the heterostructure causing self-purification play a minor role. Taking advantage of the absorption-based technique of magnetic circular dichroism, we directly prove the presence of sp-d exchange interactions between the dopants and the band charge carriers in CdSe/Co2+:CdS heteronanoplatelets. Thus, our study not only demonstrates magneto-optical functionality in 2D nanocrystals by Co2+ doping but also shows that a careful choice of the dopant type paves the way for a more detailed understanding of the impurity incorporation process into these novel 2D colloidal materials.

1.
S.
Ithurria
and
B.
Dubertret
, “
Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level
,”
J. Am. Chem. Soc.
130
(
49
),
16504
16505
(
2008
).
2.
S.
Ithurria
,
M. D.
Tessier
,
B.
Mahler
,
R. P. S. M.
Lobo
,
B.
Dubertret
, and
A. L.
Efros
, “
Colloidal nanoplatelets with two-dimensional electronic structure
,”
Nat. Mater.
10
(
12
),
936
941
(
2011
).
3.
M. D.
Tessier
,
C.
Javaux
,
I.
Maksimovic
,
V.
Loriette
, and
B.
Dubertret
, “
Spectroscopy of single CdSe nanoplatelets
,”
ACS Nano
6
(
8
),
6751
6758
(
2012
).
4.
C.
Bouet
,
M. D.
Tessier
,
S.
Ithurria
,
B.
Mahler
,
B.
Nadal
, and
B.
Dubertret
, “
Flat colloidal semiconductor nanoplatelets
,”
Chem. Mater.
25
(
8
),
1262
1271
(
2013
).
5.
A.
Yeltik
,
S.
Delikanli
,
M.
Olutas
,
Y.
Kelestemur
,
B.
Guzelturk
, and
H. V.
Demir
, “
Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets
,”
J. Phys. Chem. C
119
(
47
),
26768
26775
(
2015
).
6.
A. W.
Achtstein
,
A.
Antanovich
,
A.
Prudnikau
,
R.
Scott
,
U.
Woggon
, and
M.
Artemyev
, “
Linear absorption in CdSe nanoplates: Thickness and lateral size dependency of the intrinsic absorption
,”
J. Phys. Chem. C
119
(
34
),
20156
20161
(
2015
).
7.
M.
Nasilowski
,
B.
Mahler
,
E.
Lhuillier
,
S.
Ithurria
, and
B.
Dubertret
, “
Two-dimensional colloidal nanocrystals
,”
Chem. Rev.
116
(
18
),
10934
10982
(
2016
).
8.
R.
Scott
,
J.
Heckmann
,
A. V.
Prudnikau
,
A.
Antanovich
,
A.
Mikhailov
,
N.
Owschimikow
,
M.
Artemyev
,
J. I.
Climente
,
U.
Woggon
,
N. B.
Grosse
 et al, “
Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure
,”
Nat. Nanotechnol.
12
(
12
),
1155
1160
(
2017
).
9.
D.
Norris
,
A.
Efros
,
M.
Rosen
, and
M.
Bawendi
, “
Size dependence of exciton fine structure in CdSe quantum dots
,”
Phys. Rev. B
53
(
24
),
16347
16354
(
1996
).
10.
Semiconductor Nanocrystal Quantum Dots
, edited by
A. L.
Rogach
(
Springer Vienna
,
Vienna
,
2008
).
11.
Nanocrystal Quantum Dots
, 2nd ed., edited by
V. I.
Klimov
(
CRC Press
,
Boca Raton, FL, USA
,
2010
).
12.
S.
Ithurria
and
D. V.
Talapin
, “
Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media
,”
J. Am. Chem. Soc.
134
(
45
),
18585
18590
(
2012
).
13.
B.
Mahler
,
B.
Nadal
,
C.
Bouet
,
G.
Patriarche
, and
B.
Dubertret
, “
Core/shell colloidal semiconductor nanoplatelets
,”
J. Am. Chem. Soc.
134
(
45
),
18591
18598
(
2012
).
14.
M. D.
Tessier
,
P.
Spinicelli
,
D.
Dupont
,
G.
Patriarche
,
S.
Ithurria
, and
B.
Dubertret
, “
Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets
,”
Nano Lett.
14
(
1
),
207
213
(
2014
).
15.
Y.
Kelestemur
,
M.
Olutas
,
S.
Delikanli
,
B.
Guzelturk
,
M. Z.
Akgul
, and
H. V.
Demir
, “
Type-II colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets
,”
J. Phys. Chem. C
119
(
4
),
2177
2185
(
2015
).
16.
S.
Pedetti
,
S.
Ithurria
,
H.
Heuclin
,
G.
Patriarche
, and
B.
Dubertret
, “
Type-II CdSe/CdTe core/crown semiconductor nanoplatelets
,”
J. Am. Chem. Soc.
136
(
46
),
16430
16438
(
2014
).
17.
S.
Delikanli
,
B.
Guzelturk
,
P. L.
Hernández-Martínez
,
T.
Erdem
,
Y.
Kelestemur
,
M.
Olutas
,
M. Z.
Akgul
, and
H. V.
Demir
, “
Continuously tunable emission in inverted type-I CdS/CdSe core/crown semiconductor nanoplatelets
,”
Adv. Funct. Mater.
25
(
27
),
4282
4289
(
2015
).
18.
A.
Polovitsyn
,
Z.
Dang
,
J. L.
Movilla
,
B.
Martín-García
,
A. H.
Khan
,
G. H. V.
Bertrand
,
R.
Brescia
, and
I.
Moreels
, “
Synthesis of air-stable CdSe/ZnS core–shell nanoplatelets with tunable emission wavelength
,”
Chem. Mater.
29
(
13
),
5671
5680
(
2017
).
19.
M. D.
Tessier
,
B.
Mahler
,
B.
Nadal
,
H.
Heuclin
,
S.
Pedetti
, and
B.
Dubertret
, “
Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield
,”
Nano Lett.
13
(
7
),
3321
3328
(
2013
).
20.
Z.
Chen
,
B.
Nadal
,
B.
Mahler
,
H.
Aubin
, and
B.
Dubertret
, “
Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence
,”
Adv. Funct. Mater.
24
(
3
),
295
302
(
2014
).
21.
F.
Zhang
,
S.
Wang
,
L.
Wang
,
Q.
Lin
,
H.
Shen
,
W.
Cao
,
C.
Yang
,
H.
Wang
,
L.
Yu
,
Z.
Du
 et al, “
Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets
,”
Nanoscale
8
(
24
),
12182
12188
(
2016
).
22.
U.
Giovanella
,
M.
Pasini
,
M.
Lorenzon
,
F.
Galeotti
,
C.
Lucchi
,
F.
Meinardi
,
S.
Luzzati
,
B.
Dubertret
, and
S.
Brovelli
, “
Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air
,”
Nano Lett.
18
(
6
),
3441
3448
(
2018
).
23.
B.
Guzelturk
,
Y.
Kelestemur
,
M.
Olutas
,
S.
Delikanli
, and
H. V.
Demir
, “
Amplified spontaneous emission and lasing in colloidal nanoplatelets
,”
ACS Nano
8
(
7
),
6599
6605
(
2014
).
24.
Z.
Yang
,
M.
Pelton
,
I.
Fedin
,
D. V.
Talapin
, and
E.
Waks
, “
A room temperature continuous-wave nanolaser using colloidal quantum wells
,”
Nat. Commun.
8
(
1
),
143
(
2017
).
25.
Y.
Gao
,
M.
Li
,
S.
Delikanli
,
H.
Zheng
,
B.
Liu
,
C.
Dang
,
T. C.
Sum
, and
H. V.
Demir
, “
Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets
,”
Nanoscale
10
(
20
),
9466
9475
(
2018
).
26.
J. F.
Suyver
,
S. F.
Wuister
,
J. J.
Kelly
, and
A.
Meijerink
, “
Luminescence of nanocrystalline ZnSe:Mn2+
,”
Phys. Chem. Chem. Phys.
2
(
23
),
5445
5448
(
2000
).
27.
D. J.
Norris
,
N.
Yao
,
F. T.
Charnock
, and
T. A.
Kennedy
, “
High-quality manganese-doped ZnSe nanocrystals
,”
Nano Lett.
1
(
1
),
3
7
(
2001
).
28.
R.
Beaulac
,
L.
Schneider
,
P. I.
Archer
,
G.
Bacher
, and
D. R.
Gamelin
, “
Light-induced spontaneous magnetization in doped colloidal quantum dots
,”
Science
325
(
5943
),
973
976
(
2009
).
29.
H.
Chen
,
S.
Maiti
, and
D. H.
Son
, “
Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals
,”
ACS Nano
6
(
1
),
583
591
(
2012
).
30.
A.
Pandey
,
S.
Brovelli
,
R.
Viswanatha
,
L.
Li
,
J. M.
Pietryga
,
V. I.
Klimov
, and
S. A.
Crooker
, “
Long-lived photoinduced magnetization in copper-doped ZnSe-CdSe core-shell nanocrystals
,”
Nat. Nanotechnol.
7
(
12
),
792
797
(
2012
).
31.
Z.
Hu
,
S.
Xu
,
X.
Xu
,
Z.
Wang
,
Z.
Wang
,
C.
Wang
, and
Y.
Cui
, “
Co-doping of Ag into Mn:ZnSe quantum dots: Giving optical filtering effect with improved monochromaticity
,”
Sci. Rep.
5
(
1
),
14817
(
2015
).
32.
K. E.
Knowles
,
K. H.
Hartstein
,
T. B.
Kilburn
,
A.
Marchioro
,
H. D.
Nelson
,
P. J.
Whitham
, and
D. R.
Gamelin
, “
Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications
,”
Chem. Rev.
116
(
18
),
10820
10851
(
2016
).
33.
H. D.
Nelson
,
S. O. M.
Hinterding
,
R.
Fainblat
,
S. E.
Creutz
,
X.
Li
, and
D. R.
Gamelin
, “
Mid-gap states and normal vs inverted bonding in luminescent Cu+- and Ag+-doped CdSe nanocrystals
,”
J. Am. Chem. Soc.
139
(
18
),
6411
6421
(
2017
).
34.
N.
Pradhan
,
S.
Das Adhikari
,
A.
Nag
, and
D. D.
Sarma
, “
Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals
,”
Angew. Chem., Int. Ed.
56
(
25
),
7038
7054
(
2017
).
35.
C.
Pu
,
X.
Peng
,
Z.
Xu
,
X.
Yang
,
S.
Liu
, and
H.
Qin
, “
Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals
,”
J. Am. Chem. Soc.
141
,
2288
2298
(
2019
).
36.
J.
Eilers
,
E.
Groeneveld
,
C.
de Mello Donegá
, and
A.
Meijerink
, “
Optical properties of Mn-doped ZnTe magic size nanocrystals
,”
J. Phys. Chem. Lett.
3
(
12
),
1663
1667
(
2012
).
37.
J.
Yang
,
R.
Fainblat
,
S. G.
Kwon
,
F.
Muckel
,
J. H.
Yu
,
H.
Terlinden
,
B. H.
Kim
,
D.
Iavarone
,
M. K.
Choi
,
I. Y.
Kim
 et al, “
Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters
,”
J. Am. Chem. Soc.
137
(
40
),
12776
12779
(
2015
).
38.
S.
Pittala
,
M. J.
Mortelliti
,
F.
Kato
, and
K. R.
Kittilstved
, “
Substitution of Co2+ ions into CdS-based molecular clusters
,”
Chem. Commun.
51
(
96
),
17096
17099
(
2015
).
39.
F.
Muckel
,
J.
Yang
,
S.
Lorenz
,
W.
Baek
,
H.
Chang
,
T.
Hyeon
,
G.
Bacher
, and
R.
Fainblat
, “
Digital doping in magic-sized CdSe clusters
,”
ACS Nano
10
(
7
),
7135
7141
(
2016
).
40.
J.
Yang
,
F.
Muckel
,
W.
Baek
,
R.
Fainblat
,
H.
Chang
,
G.
Bacher
, and
T.
Hyeon
, “
Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters
,”
J. Am. Chem. Soc.
139
(
19
),
6761
6770
(
2017
).
41.
J.
Yang
,
F.
Muckel
,
B. K.
Choi
,
S.
Lorenz
,
I. Y.
Kim
,
J.
Ackermann
,
H.
Chang
,
T.
Czerney
,
V. S.
Kale
,
S.-J.
Hwang
 et al, “
Co2+-doping of magic-sized CdSe clusters: Structural insights via ligand field transitions
,”
Nano Lett.
18
(
11
),
7350
7357
(
2018
).
42.
M.
Sharma
,
K.
Gungor
,
A.
Yeltik
,
M.
Olutas
,
B.
Guzelturk
,
Y.
Kelestemur
,
T.
Erdem
,
S.
Delikanli
,
J. R.
McBride
, and
H. V.
Demir
, “
Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators
,”
Adv. Mater.
29
(
30
),
1700821
(
2017
).
43.
M.
Dufour
,
E.
Izquierdo
,
C.
Livache
,
B.
Martinez
,
M. G.
Silly
,
T.
Pons
,
E.
Lhuillier
,
C.
Delerue
, and
S.
Ithurria
, “
Doping as a strategy to tune color of 2D colloidal nanoplatelets
,”
ACS Appl. Mater. Interfaces
11
(
10
),
10128
10134
(
2019
).
44.
A. H.
Khan
,
V.
Pinchetti
,
I.
Tanghe
,
Z.
Dang
,
B.
Martín-García
,
Z.
Hens
,
D.
Van Thourhout
,
P.
Geiregat
,
S.
Brovelli
, and
I.
Moreels
, “
Tunable and efficient red to near-infrared photoluminescence by synergistic exploitation of core and surface silver doping of CdSe nanoplatelets
,”
Chem. Mater.
31
(
4
),
1450
1459
(
2019
).
45.
S.
Delikanli
,
M. Z.
Akgul
,
J. R.
Murphy
,
B.
Barman
,
Y.
Tsai
,
T.
Scrace
,
P.
Zhang
,
B.
Bozok
,
P. L.
Hernández-Martínez
,
J.
Christodoulides
 et al, “
Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier–dopant exchange interactions
,”
ACS Nano
9
(
12
),
12473
12479
(
2015
).
46.
J. R.
Murphy
,
S.
Delikanli
,
T.
Scrace
,
P.
Zhang
,
T.
Norden
,
T.
Thomay
,
A. N.
Cartwright
,
H. V.
Demir
, and
A.
Petrou
, “
Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets
,”
Appl. Phys. Lett.
108
(
24
),
242406
(
2016
).
47.
F.
Muckel
,
S.
Delikanli
,
P. L.
Hernández-Martínez
,
T.
Priesner
,
S.
Lorenz
,
J.
Ackermann
,
M.
Sharma
,
H. V.
Demir
, and
G.
Bacher
, “
Sp–d exchange interactions in wave function engineered colloidal CdSe/Mn:CdS hetero-nanoplatelets
,”
Nano Lett.
18
(
3
),
2047
2053
(
2018
).
48.
B.
Henderson
and
G. F.
Imbusch
,
Optical Spectroscopy of Inorganic Solids
(
Oxford University Press
,
New York
,
1989
).
49.
J. F.
Suyver
,
J. J.
Kelly
, and
A.
Meijerink
, “
Temperature-induced line broadening, line narrowing and line shift in the luminescence of nanocrystalline ZnS:Mn2+
,”
J. Lumin.
104
(
3
),
187
196
(
2003
).
50.
J. G.
Solé
,
L. E.
Bausá
, and
D.
Jaque
,
An Introduction to the Optical Spectroscopy of Inorganic Solids
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2005
).
51.
B. N.
Figgis
and
M. A.
Hitchman
,
Ligand Field Theory and Its Applications
(
Wiley
,
New York, NY, USA
,
2000
).
52.
H. A.
Weakliem
, “
Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals
,”
J. Chem. Phys.
36
(
8
),
2117
2140
(
1962
).
53.
P. V.
Radovanovic
and
D. R.
Gamelin
, “
Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: Demonstration of an isocrystalline core/shell synthetic method
,”
J. Am. Chem. Soc.
123
(
49
),
12207
12214
(
2001
).
54.
P. I.
Archer
,
S. A.
Santangelo
, and
D. R.
Gamelin
, “
Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale
,”
J. Am. Chem. Soc.
129
(
31
),
9808
9818
(
2007
).
55.
Y.
Tanabe
and
S.
Sugano
, “
On the absorption spectra of complex ions II
,”
J. Phys. Soc. Jpn.
9
(
5
),
766
779
(
1954
).
56.
P. R.
Radovanovic
and
D. R.
Gamelin
, “
Magnetic circular dichroism spectroscopy of Co2+:CdS diluted magnetic semiconductor quantum dots
,”
Proc. SPIE
4809
,
51
61
(
2002
).
57.
D. E.
Mccumber
and
M. D.
Sturge
, “
Linewidth and temperature shift of the R lines in ruby
,”
J. Appl. Phys.
34
(
6
),
1682
1684
(
1963
).
58.
A.
Meijerink
,
G.
Blasse
,
J.
Sytsma
,
C.
de Mello Donega
, and
A.
Ellens
, “
Electron-phonon coupling in rare earth compounds
,”
Acta Phys. Pol., A
90
(
1
),
109
119
(
1996
).
59.
A.
Ellens
,
H.
Andres
,
A.
Meijerink
, and
G.
Blasse
, “
Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength
,”
Phys. Rev. B
55
(
1
),
173
179
(
1997
).
60.
D. K.
Sardar
and
S. C.
Stubblefield
, “
Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host
,”
J. Appl. Phys.
83
(
3
),
1195
1199
(
1998
).
61.
Z.
Liu
,
B.
Qu
,
J. L.
Doualan
,
B.
Xu
,
H.
Xu
,
Z.
Cai
,
A.
Braud
,
P.
Camy
, and
R.
Moncorgé
, “
Temperature effects on the main absorption and emission lines of the Pr3+:LiYF4 laser crystal
,”
J. Opt. Soc. Am. B
32
(
2
),
263
(
2015
).
62.
A.
Vink
and
A.
Meijerink
, “
Electron–phonon coupling of Cr3+ in YAG and YGG
,”
J. Lumin.
87-89
,
601
604
(
2000
).
63.
A. P.
Vink
,
A.
Meijerink
, and
G. D.
Jones
, “
Temperature dependence of infrared-absorption lines of Co2+ in cadmium halides
,”
Phys. Rev. B
66
(
13
),
134303
(
2002
).
64.
X.
Chen
,
Y.
Liu
, and
D.
Tu
,
Lanthanide-Doped Luminescent Nanomaterials
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2014
).
65.
J.
Rockenberger
,
L.
Tröger
,
A. L.
Rogach
,
M.
Tischer
,
M.
Grundmann
,
A.
Eychmüller
, and
H.
Weller
, “
The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals
,”
J. Chem. Phys.
108
(
18
),
7807
7815
(
1998
).
66.
O.
Madelung
,
Semiconductors: Data Handbook
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2003
).
67.
W. R.
Mason
,
A Practical Guide to Magnetic Circular Dichroism Spectroscopy
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2007
).
68.
U.
Gennser
,
X. C.
Liu
,
T. Q.
Vu
,
D.
Heiman
,
T.
Fries
,
Y.
Shapira
,
M.
Demianiuk
, and
A.
Twardowski
, “
Exchange energies, bound magnetic polarons, and magnetization in CdSe:Co and CdS:Co
,”
Phys. Rev. B
51
(
15
),
9606
9611
(
1995
).
69.
A. D.
Buckingham
and
P. J.
Stephens
, “
Magnetic optical activity
,”
Annu. Rev. Phys. Chem.
17
(
1
),
399
432
(
1966
).
70.
T. A.
Kaden
and
B.
Holmquist
, “
Magnetic circular dichroism of cobalt(ii) complexes
,”
Inorg. Chem.
13
(
11
),
2585
2590
(
1974
).
71.
R.
Fainblat
,
J.
Frohleiks
,
F.
Muckel
,
J. H.
Yu
,
J.
Yang
,
T.
Hyeon
, and
G.
Bacher
, “
Quantum confinement-controlled exchange coupling in manganese(ii)-doped CdSe two-dimensional quantum well nanoribbons
,”
Nano Lett.
12
(
10
),
5311
5317
(
2012
).
72.
M.
Kuno
,
M.
Nirmal
,
M. G.
Bawendi
,
A.
Efros
, and
M.
Rosen
, “
Magnetic circular dichroism study of CdSe quantum dots
,”
J. Chem. Phys.
108
(
10
),
4242
(
1998
).
73.
J. A.
Gaj
, in
Introduction to the Physics of Diluted Magnetic Semiconductors
, Springer Series in Materials Science Vol. 144, edited by
J. A.
Gaj
and
J.
Kossut
(
Springer Berlin Heidelberg
,
Berlin
,
2010
).
74.
E. V.
Shornikova
,
L.
Biadala
,
D. R.
Yakovlev
,
D.
Feng
,
V. F.
Sapega
,
N.
Flipo
,
A. A.
Golovatenko
,
M. A.
Semina
,
A. V.
Rodina
,
A. A.
Mitioglu
 et al, “
Electron and hole G-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells
,”
Nano Lett.
18
(
1
),
373
380
(
2018
).
75.
C.
Rigaux
, “
Magnetooptics in narrow gap diluted magnetic semiconductors
,” in
Semiconductors and Semimetals
, edited by
J. K.
Furdyna
and
J.
Kossut
(
Elsevier
,
1988
), Chap. 6, Vol. 25, pp.
229
274
.
76.
J. A.
Gaj
and
J.
Kossut
, “
Basic consequences of sp-d and d-d interactions in DMS
,” in
Introduction to the Physics of Diluted Magnetic Semiconductors
, edited by
J.
Kossut
and
J. A.
Gaj
(
Springer-Verlag
,
Berlin
,
2010
), pp.
1
36
.
77.
A. M.
Schimpf
and
D. R.
Gamelin
, “
Thermal tuning and inversion of excitonic Zeeman splittings in colloidal doped CdSe quantum dots
,”
J. Phys. Chem. Lett.
3
(
10
),
1264
1268
(
2012
).
78.
C. J.
Barrows
,
R.
Fainblat
, and
D. R.
Gamelin
, “
Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities
,”
J. Mater. Chem. C
5
(
21
),
5232
5238
(
2017
).
79.
S.
Delikanli
,
G.
Yu
,
A.
Yeltik
,
S.
Bose
,
T.
Erdem
,
J.
Yu
,
O.
Erdem
,
M.
Sharma
,
V. K.
Sharma
,
U.
Quliyeva
 et al, “
Ultrathin highly luminescent two-monolayer colloidal CdSe nanoplatelets
,”
Adv. Funct. Mater.
29
(
35
),
1901028
(
2019
).
80.
R.
Strassberg
,
S.
Delikanli
,
Y.
Barak
,
J.
Dehnel
,
A.
Kostadinov
,
G.
Maikov
,
P. L.
Hernandez-Martinez
,
M.
Sharma
,
H. V.
Demir
, and
E.
Lifshitz
, “
Persuasive evidence for electron–nuclear coupling in diluted magnetic colloidal nanoplatelets using optically detected magnetic resonance spectroscopy
,”
J. Phys. Chem. Lett.
10
(
15
),
4437
4447
(
2019
).

Supplementary Material

You do not currently have access to this content.