The surface basicity of the alkaline-earth metal oxides has been investigated by studying the properties of 17O nuclear magnetic resonance (NMR). To this end, we performed density functional theory calculations and determined the 17O chemical shift and the quadrupolar coupling constants of the regular and stepped surfaces of MO (M = Mg, Ca, Sr, and Ba) oxides. The computed average chemical shift (δisoav) for 17O NMR of bulk MgO, CaO, SrO, and BaO is 46, 301, 394, and 636 ppm, respectively, in excellent agreement with the experiment. The 17O NMR chemical shifts correlate linearly with the Madelung potential in the four oxides. Next, we considered the changes in the 17O chemical shift due to the adsorption of BR3 (R = F and OCH3) and pyrrole as probe molecules. We found that the 17O NMR signal of the O ion directly bound to the probe molecule shifts considerably compared to the clean surface. This is due to a change in the polarization of the O charge distribution due to the molecular adsorption. This change is the largest for BaO, with the strongest bond and the shortest surface-adsorbate distance, and the smallest for MgO, thus showing a direct correlation between 17O NMR and surface basicity. The 17O chemical shift of the basic site correlates linearly also with several properties of the adsorbed molecules, providing a direct measure of the surface basicity.

1.
K.
Tanabe
,
M.
Misono
,
Y.
Ono
, and
H.
Hattori
, “
Definition and classification of solid acids and bases
,”
Stud. Surf. Sci. Catal.
51
,
1
3
(
1989
).
2.
C.
Sun
and
J. C.
Berg
, “
A review of the different techniques for solid surface acid–base characterization
,”
Adv. Colloid Interface Sci.
105
,
151
175
(
2003
).
3.
L.
Ferretto
and
A.
Glisenti
, “
Surface acidity and basicity of a rutile powder
,”
Chem. Mater.
15
,
1181
1188
(
2003
).
4.
O. V.
Manoilova
,
S. G.
Podkolzin
,
B.
Tope
,
J.
Lercher
,
E. E.
Stangland
,
J.-M.
Goupil
, and
B. M.
Weckhuysen
, “
Surface acidity and basicity of La2O3, LaOCl, and LaCl3 characterized by IR spectroscopy, TPD, and DFT Calculations
,”
J. Phys. Chem. B
108
,
15770
15781
(
2004
).
5.
A.
Auroux
and
A.
Gervasini
, “
Microcalorimetric study of the acidity and basicity of metal oxide surfaces
,”
J. Phys. Chem.
94
,
6371
6379
(
1990
).
6.
Y.
Fu
,
L.
Zhang
,
B.
Yue
,
X.
Chen
, and
H.
He
, “
Simultaneous characterization of solid acidity and basicity of metal oxide catalysts via the solid-state NMR technique
,”
J. Phys. Chem. C
122
,
24094
24102
(
2018
).
7.
D.
Cordischi
and
V.
Indovina
, “
Electron donor sites and acid-base properties of oxide surfaces, as studied by electron spin resonance spectroscopy
,”
J. Chem. Soc., Faraday Trans. 1
72
,
2341
2347
(
1976
).
8.
M.
Tamura
,
K.-I.
Shimizu
, and
A.
Satsuma
, “
Comprehensive IR study on acid/base properties of metal oxides
,”
Appl. Catal., A
433
,
135
145
(
2012
).
9.
M.
Tireli
,
M. J.
Kulcsar
,
N.
Cindro
,
D.
Gracin
,
N.
Biliskov
,
M.
Borovina
,
M.
Curic
,
I.
Halasz
, and
K.
Uzarevic
, “
Mechanochemical reactions studied by in situ Raman spectroscopy: Base catalysis in liquid-assisted grinding
,”
Chem. Commun.
51
,
8058
8061
(
2015
).
10.
M.
Zaki
,
G.
Hussein
,
S.
Mansour
,
H.
Ismail
, and
G.
Mekhemer
, “
Ceria on silica and alumina catalysts: Dispersion and surface acid-base properties as probed by X-ray diffractometry, UV-vis diffuse reflectance and in situ IR absorption studies
,”
Colloids Surf., A
127
,
47
56
(
1997
).
11.
K.
Friedel Ortega
,
R.
Arrigo
,
B.
Frank
,
R.
Schlogl
, and
A.
Trunschke
, “
Acid–base properties of N-doped carbon nanotubes: A combined temperature-programmed desorption, X-ray photoelectron spectroscopy, and 2-propanol reaction investigation
,”
Chem. Mater.
28
,
6826
6839
(
2016
).
12.
D.
Stosic
,
S.
Bennici
,
S.
Sirotin
,
P.
Stelmachowski
,
J.-L.
Couturier
,
J.-L.
Dubois
,
A.
Travert
, and
A.
Auroux
, “
Examination of acid–base properties of solid catalysts for gas phase dehydration of glycerol: FTIR and adsorption microcalorimetry studies
,”
Catal. Today
226
,
167
175
(
2014
).
13.
T.
Seki
and
M.
Onaka
, “
Elucidation of basic properties of mesoporous alumina through the temperature-programmed desorption of carbon dioxide and heterogeneous basic catalysis of mesoporous alumina for the Knoevenagel reaction in supercritical CO2
,”
J. Mol. Catal. A: Chem.
263
,
115
(
2007
).
14.
V. L.
Sushkevich
,
I. I.
Ivanova
, and
A. V.
Yakimov
, “
Revisiting acidity of SnBEA catalysts by combined application of FTIR spectroscopy of different probe molecules
,”
J. Phys. Chem. C
121
,
11437
11447
(
2007
).
15.
A.
Zheng
,
S.
Li
,
S. B.
Liu
, and
F.
Deng
, “
Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy
,”
Acc. Chem. Res.
49
,
655
663
(
2016
).
16.
I. P.
Gerothanassis
, “
Oxygen-17 NMR spectroscopy: Basic principles and applications (Part I)
,”
Prog. Nucl. Magn. Reson. Spectrosc.
56
,
95
197
(
2010
).
17.
I. P.
Gerothanassis
, “
Oxygen-17 NMR spectroscopy: Basic principles and applications (Part II)
,”
Prog. Nucl. Magn. Reson. Spectrosc.
57
,
1
110
(
2010
).
18.
D. C.
Duncan
and
C. L.
Hill
, “
Mechanism of reaction of reduced polyoxometalates with O2 evaluated by 17O NMR
,”
J. Am. Chem. Soc.
119
,
243
244
(
1997
).
19.
T.
Schneppensieper
,
A.
Zahl
, and
R.
Eldik
, “
Water exchange controls the complex-formation mechanism of water-soluble iron (iii) porphyrins: Conclusive evidence for dissociative water exchange from a high-pressure 17O NMR Study
,”
Angew. Chem., Int. Ed.
40
,
1678
1680
(
2001
).
20.
L.
Peng
,
Y.
Liu
,
N.
Kim
,
J. E.
Readman
, and
C. P.
Grey
, “
Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques
,”
Nat. Mater.
4
,
216
219
(
2005
).
21.
L.
Peng
,
H.
Huo
,
Y.
Liu
, and
C. P.
Grey
, “
17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5
,”
J. Am. Chem. Soc.
129
,
335
346
(
2007
).
22.
H.
Huo
,
L.
Peng
,
Z.
Gan
, and
C. P.
Grey
, “
Solid-state MAS NMR studies of Brønsted acid sites in zeolite H-mordenite
,”
J. Am. Chem. Soc.
134
,
9708
9720
(
2012
).
23.
F.
Maleki
and
G.
Pacchioni
, “
DFT study of 17O NMR spectroscopy applied to zirconia surfaces and nanoparticles
,”
J. Phys. Chem. C
123
,
21629
21638
(
2019
).
24.
M.
Chiesa
,
E.
Giamello
,
C. D.
Valentin
,
G.
Pacchioni
,
Z.
Sojka
, and
S. V.
Doorslaer
, “
Nature of the chemical bond between metal atoms and oxide surfaces: New evidences from spin density studies of K atoms on alkaline earth oxides
,”
J. Am. Chem. Soc.
127
,
16935
16944
(
2005
).
25.
G.
Pacchioni
,
J. M.
Ricart
, and
F.
Illas
, “
Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO (100) surfaces. A theoretical measure of oxide basicity
,”
J. Am. Chem. Soc.
116
,
10152
(
1994
).
26.
C. D.
Valentin
,
C.
Locati
, and
G.
Pacchioni
, “
Probing the basicity of regular and defect sites of alkaline earth metal oxide surfaces by BF3 adsorption: A theoretical analysis
,”
ChemPhysChem
5
,
642
651
(
2004
).
27.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
28.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
29.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
30.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
31.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
32.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
33.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
34.
T.
Vancompernolle
,
N.
Merle
,
F.
Capet
,
I. D.
Rosal
,
M.
Laurent
,
L.
Delevoye
,
F.
Pourpoint
, and
R. M.
Gauvin
, “
Grafting of a new bis-silylamido aluminum species on silica: Insight from solid-state NMR into interactions with the surface
,”
Dalton Trans.
48
,
5243
(
2019
).
35.
S.
Maeda
,
T.
Mori
,
C.
Sasaki
,
K. K.
Kunimoto
,
A.
Kuwae
, and
K.
Hanai
, “
Structural investigation of microbial poly(ε-L-lysine) derivatives with azo dyes by solid-state 13C and 15N NMR
,”
Polym. Bull.
53
,
259
267
(
2005
).
36.
M.
Mogemark
,
M.
Elofsson
, and
J.
Kihlberg
, “
Monitoring solid-phase glycoside synthesis with 19F NMR spectroscopy
,”
Org. Lett.
3
,
1463
1466
(
2001
).
37.
M.
Wang
,
X. P.
Wu
,
S.
Zheng
,
L.
Zhao
,
L.
Li
,
L.
Shen
,
Y.
Gao
,
N.
Xue
,
X.
Guo
,
W.
Huang
,
Z.
Gan
,
F.
Blanc
,
Z.
Yu
,
X.
Ke
,
W.
Ding
,
X. Q.
Gong
,
C. P.
Grey
, and
L.
Peng
, “
Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy
,”
Sci. Adv.
1
,
e1400133
(
2015
).
38.
Y.
Li
,
X.
Wu
,
N.
Jiang
,
M.
Lin
,
L.
Shen
,
H.
Sun
,
Y.
Wang
,
M.
Wang
,
X.
Ke
,
Z.
Yu
,
F.
Gao
,
L.
Dong
,
X.
Guo
,
W.
Hou
,
W.
Ding
,
X. Q.
Gong
,
C. P.
Grey
, and
L.
Peng
, “
Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy
,”
Nat. Commun.
8
,
581
(
2017
).
39.
L.
Shen
,
X. P.
Wu
,
Y.
Wang
,
M.
Wang
,
J.
Chen
,
Y.
Li
,
H.
Huo
,
W.
Hou
,
W.
Ding
,
X. Q.
Gong
, and
L.
Peng
, “
17O solid state NMR studies of ZrO2 nanoparticles
,”
J. Phys. Chem. C
123
,
4158
4167
(
2019
).
40.
G. L.
Turner
,
S. E.
Chung
, and
E.
Oldfield
, “
Solid-state oxygen-17 nuclear magnetic resonance spectroscopic study of the group 11 oxides
,”
J. Magn. Reson.
64
,
316
324
(
1969
).
41.
D.
Sundholm
and
J.
Olsen
, “
Finite element multiconfiguration Hartree-Fock calculations on carbon, oxygen, and neon: The nuclear quadrupole moments of carbon-11, oxygen-17, and neon-21
,”
J. Phys. Chem.
96
,
627
630
(
1992
).
42.
E.
Lippmaa
,
A.
Samoson
, and
M.
Magi
, “
High-resolution aluminum-27 NMR of aluminosilicates
,”
J. Am. Chem. Soc.
108
,
1730
1735
(
1986
).
43.
G.
Pacchioni
and
P. S.
Bagus
, “
Theoretical analysis of the O(1s) binding-energy shifts in alkaline-earth oxides: Chemical or electrostatic contributions
,”
Phys. Rev. B
50
,
2576
(
1994
).
44.
S.
Fliszar
,
G.
Cardinal
, and
M. T.
Beraldin
, “
Charge distributions and chemical effects. XXX. Relationships between nuclear magnetic resonance shifts and atomic charges
,”
J. Am. Chem. Soc.
104
,
5287
5292
(
1982
).
45.
S.
Fliszar
and
G.
Cardinal
, “
Charge distributions and chemical effects. XXXV. Polyunsaturated hydrocarbons, energy calculations from C-13 NMR spectra
,”
Can. J. Chem.
62
,
2748
2754
(
1984
).
46.
M.
Comeau
,
M. T.
Beraldin
,
E. C.
Vauthier
, and
S.
Fliszar
, “
Charge distributions and chemical effects. XXXVIII. Correlations between nuclear magnetic resonance shifts and electronic charges of nitrogen atoms
,”
Can. J. Chem.
63
,
3226
3232
(
1985
).
47.
S.
Fliszar
,
Charge Distributions and Chemical Effects: A New Approach to the Electronic Structure and Energy of Molecules
(
Springer-Verlag
,
New York
,
1983
), pp.
41
69
.
48.
C.
Li
,
S. F.
Fu
,
H.
Zhang
, and
Q.
Xin
, “
An infrared spectroscopic study on the Lewis base properties of metal oxides by using a novel probe molecule: Boric acid trimethyl ester
,”
J. Chem. Soc., Chem. Commun.
1994
,
17
18
.

Supplementary Material

You do not currently have access to this content.