Ring polymer molecular dynamics (RPMD) has proven to be an accurate approach for calculating thermal rate coefficients of various chemical reactions. For wider application of this methodology, efficient ways to generate the underlying full-dimensional potential energy surfaces (PESs) and the corresponding energy gradients are required. Recently, we have proposed a fully automated procedure based on combining the original RPMDrate code with active learning for PES on-the-fly using moment tensor potential and successfully applied it to two representative thermally activated chemical reactions [I. S. Novikov et al., Phys. Chem. Chem. Phys. 20, 29503–29512 (2018)]. In this work, using a prototype insertion chemical reaction S + H2, we show that this procedure works equally well for another class of chemical reactions. We find that the corresponding PES can be generated by fitting to less than 1500 automatically generated structures, while the RPMD rate coefficients show deviation from the reference values within the typical convergence error of the RPMDrate. We note that more structures are accumulated during the real-time propagation of the dynamic factor (the recrossing factor) as opposed to the previous study. We also observe that a relatively flat free energy profile along the reaction coordinate before entering the complex-formation well can cause issues with locating the maximum of the free energy surface for less converged PESs. However, the final RPMD rate coefficient is independent of the position of the dividing surface that makes it invulnerable to this problem, keeping the total number of necessary structures within a few thousand. Our work concludes that, in the future, the proposed methodology can be applied to realistic complex chemical reactions with various energy profiles.

1.
V.
Wakelam
,
E.
Herbst
,
J.-C.
Loison
,
I. W. M.
Smith
,
V.
Chandrasekaran
,
B.
Pavone
,
N. G.
Adams
,
M.-C.
Bacchus-Montabonel
,
A.
Bergeat
,
K.
Béroff
,
V. M.
Bierbaum
,
M.
Chabot
,
A.
Dalgarno
,
E. F.
van Dishoeck
,
A.
Faure
,
W. D.
Geppert
,
D.
Gerlich
,
D.
Galli
,
E.
Hébrard
,
F.
Hersant
,
K. M.
Hickson
,
P.
Honvault
,
S. J.
Klippenstein
,
S. L.
Picard
,
G.
Nyman
,
P.
Pernot
,
S.
Schlemmer
,
F.
Selsis
,
I. R.
Sims
,
D.
Talbi
,
J.
Tennyson
,
J.
Troe
,
R.
Wester
, and
L.
Wiesenfeld
, “
A kinetic database for astrochemistry (KIDA)
,”
Astrophys. J. Suppl. Ser.
199
,
21
(
2012
).
2.
Y. V.
Suleimanov
,
F. J.
Aoiz
, and
H.
Guo
, “
Chemical reaction rate coefficients from ring polymer molecular dynamics: Theory and practical applications
,”
J. Phys. Chem. A
120
,
8488
8502
(
2016
).
3.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
4.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Chemical reaction rates from ring polymer molecular dynamics
,”
J. Chem. Phys.
122
,
084106
(
2005
).
5.
I. R.
Craig
and
D. E.
Manolopoulos
, “
A refined ring polymer molecular dynamics theory of chemical reaction rates
,”
J. Chem. Phys.
123
,
034102
(
2005
).
6.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
 III
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
413
(
2013
).
7.
B. J.
Braams
and
D. E.
Manolopoulos
, “
On the short-time limit of ring polymer molecular dynamics
,”
J. Chem. Phys.
125
,
124105
(
2006
).
8.
R.
Collepardo-Guevara
,
Y. V.
Suleimanov
, and
D. E.
Manolopoulos
, “
Bimolecular reaction rates from ring polymer molecular dynamics
,”
J. Chem. Phys.
130
,
174713
(
2009
).
9.
R.
Collepardo-Guevara
,
Y. V.
Suleimanov
, and
D. E.
Manolopoulos
, “
Erratum: “Bimolecular reaction rates from ring polymer molecular dynamics” [J. Chem. Phys. 130, 174713 (2009)]
,”
J. Chem. Phys.
133
,
049902
(
2010
).
10.
R.
Pérez de Tudela
,
F. J.
Aoiz
,
Y. V.
Suleimanov
, and
D. E.
Manolopoulos
, “
Chemical reaction rates from ring polymer molecular dynamics: Zero point energy conservation in Mu + H2 → MuH + H
,”
J. Phys. Chem. Lett.
3
,
493
497
(
2012
).
11.
Y. V.
Suleimanov
,
R.
Pérez de Tudela
,
P. G.
Jambrina
,
J. F.
Castillo
,
V.
Sáez-Rábanos
,
D. E.
Manolopoulos
, and
F. J.
Aoiz
, “
A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction
,”
Phys. Chem. Chem. Phys.
15
,
3655
3665
(
2013
).
12.
R.
Pérez de Tudela
,
Y. V.
Suleimanov
,
J. O.
Richardson
,
V.
Sé1ez Rébanos
,
W. H.
Green
, and
F. J.
Aoiz
, “
Stress test for quantum dynamics approximations: Deep tunneling in the muonium exchange reaction D + HMu → DMu + H
,”
J. Phys. Chem. Lett.
5
,
4219
4224
(
2014
).
13.
Y. V.
Suleimanov
,
R.
Collepardo-Guevara
, and
D. E.
Manolopoulos
, “
Bimolecular reaction rates from ring polymer molecular dynamics: Application to H + CH4 → H2 + CH3
,”
J. Chem. Phys.
134
,
044131
(
2011
).
14.
J. W.
Allen
,
W. H.
Green
,
Y.
Li
,
H.
Guo
, and
Y. V.
Suleimanov
, “
Communication: Full dimensional quantum rate coefficients and kinetic isotope effects from ring polymer molecular dynamics for a seven-atom reaction OH + CH4 → CH3 + H2O
,”
J. Chem. Phys.
138
,
221103
(
2013
).
15.
Y.
Li
,
Y. V.
Suleimanov
,
M.
Yang
,
W. H.
Green
, and
H.
Guo
, “
Ring polymer molecular dynamics calculations of thermal rate constants for the O(3P) + CH4 → OH + CH3 reaction: Contributions of quantum effects
,”
J. Phys. Chem. Lett.
4
,
48
52
(
2013
).
16.
Y.
Li
,
Y. V.
Suleimanov
,
J.
Li
,
W. H.
Green
, and
H.
Guo
, “
Rate coefficients and kinetic isotope effects of the X + CH4 → CH3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics
,”
J. Chem. Phys.
138
,
094307
(
2013
).
17.
Y.
Li
,
Y. V.
Suleimanov
,
J.
Li
,
W. H.
Green
, and
H.
Guo
, “
Quantum rate coefficients and kinetic isotope effect for the reaction Cl + CH4 → HCl + CH3 from ring polymer molecular dynamics
,”
J. Phys. Chem. A
118
,
1989
1996
(
2014
).
18.
E.
Gonzalez-Lavado
,
J. C.
Corchado
,
Y. V.
Suleimanov
,
W. H.
Green
, and
J.
Espinosa-Garcia
, “
Theoretical kinetics study of the O(3P) + CH4/CD4 hydrogen abstraction reaction: The role of anharmonicity, recrossing effects, and quantum mechanical tunneling
,”
J. Phys. Chem. A
118
,
3243
3252
(
2014
).
19.
Q.
Meng
,
J.
Chen
, and
D. H.
Zhang
, “
Communication: Rate coefficients of the H + CH4 → H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface
,”
J. Chem. Phys.
143
,
101102
(
2015
).
20.
Y. V.
Suleimanov
and
J.
Espinosa-Garcia
, “
Recrossing and tunneling in the kinetics study of the OH + CH4 → H2O + CH3 reaction
,”
J. Phys. Chem. B
120
,
1418
1428
(
2016
).
21.
D. J.
Arseneau
,
D. G.
Fleming
,
Y.
Li
,
J.
Li
,
Y. V.
Suleimanov
, and
H.
Guo
, “
Rate coefficient for the 4Heμ + CH4 reaction at 500 K: Comparison between theory and experiment
,”
J. Phys. Chem. B
120
,
1641
1648
(
2016
).
22.
Q.
Meng
,
J.
Chen
, and
D. H.
Zhang
, “
Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane
,”
J. Chem. Phys.
144
,
154312
(
2016
).
23.
J.
Zuo
,
Y.
Li
,
H.
Guo
, and
D.
Xie
, “
Rate coefficients of the HCl + OH → Cl + H2O reaction from ring polymer molecular dynamics
,”
J. Phys. Chem. A
120
,
3433
3440
(
2016
).
24.
J.
Espinosa-Garcia
,
C.
Rangel
, and
Y. V.
Suleimanov
, “
Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface
,”
Phys. Chem. Chem. Phys.
19
,
19341
19351
(
2017
).
25.
Y.
Li
,
Y. V.
Suleimanov
, and
H.
Guo
, “
Ring-polymer molecular dynamics rate coefficient calculations for insertion reactions: X + H2 → HX + H (X = N, O)
,”
J. Phys. Chem. Lett.
5
,
700
705
(
2014
).
26.
Y. V.
Suleimanov
,
W. J.
Kong
,
H.
Guo
, and
W. H.
Green
, “
Ring-polymer molecular dynamics: Rate coefficient calculations for energetically symmetric (near thermoneutral) insertion reactions (X + H2) → HX + H(X = C(1D), S(1D))
,”
J. Chem. Phys.
141
,
244103
(
2014
).
27.
K. M.
Hickson
,
J.-C.
Loison
,
H.
Guo
, and
Y. V.
Suleimanov
, “
Ring-polymer molecular dynamics for the prediction of low-temperature rates: An investigation of the C(1D) + H2 reaction
,”
J. Phys. Chem. Lett.
6
,
4194
4199
(
2015
).
28.
S.
Rampino
and
Y. V.
Suleimanov
, “
Thermal rate coefficients for the astrochemical process C + CH+C2+ + H by ring polymer molecular dynamics
,”
J. Phys. Chem. A
120
,
9887
9893
(
2016
).
29.
K. M.
Hickson
and
Y. V.
Suleimanov
, “
An experimental and theoretical investigation of the C(1D) + D2 reaction
,”
Phys. Chem. Chem. Phys.
19
,
480
486
(
2017
).
30.
D.
Nuñez-Reyes
,
K. M.
Hickson
,
P.
Larrégaray
,
L.
Bonnet
,
T.
González-Lezana
, and
Y. V.
Suleimanov
, “
A combined theoretical and experimental investigation of the kinetics and dynamics of the O(1D) + D2 reaction at low temperature
,”
Phys. Chem. Chem. Phys.
20
,
4404
4414
(
2018
).
31.
S.
Bhowmick
,
D.
Bossion
,
Y.
Scribano
, and
Y. V.
Suleimanov
, “
The low temperature D+ + H2 → HD + H+ reaction rate coefficient: A ring polymer molecular dynamics and quasi-classical trajectory study
,”
Phys. Chem. Chem. Phys.
20
,
26752
26763
(
2018
).
32.
J.
Espinosa-Garcia
,
A.
Fernandez-Ramos
,
Y. V.
Suleimanov
, and
J. C.
Corchado
, “
Theoretical study of the F(2P) + NH3 hydrogen abstraction reaction: Mechanism and kinetics
,”
J. Phys. Chem. A
118
,
554
560
(
2014
).
33.
R. P.
de Tudela
,
Y. V.
Suleimanov
,
M.
Menendez
,
J. F.
Castillo
, and
F. J.
Aoiz
, “
A ring polymer molecular dynamics study of the Cl + O3 reaction
,”
Phys. Chem. Chem. Phys.
16
,
2920
2927
(
2014
).
34.
Y. V.
Suleimanov
,
A.
Aguado
,
S.
Gómez-Carrasco
, and
O.
Roncero
, “
A ring polymer molecular dynamics approach to study the transition between statistical and direct mechanisms in the H2 + H3+H3+ + H2 reaction
,”
J. Phys. Chem. Lett.
9
,
2133
2137
(
2018
).
35.
S. S.
Kumar
,
F.
Grussie
,
Y. V.
Suleimanov
,
H.
Guo
, and
H.
Kreckel
, “
Low temperature rates for key steps of interstellar gas-phase water formation
,”
Sci. Adv.
4
,
eaar3417
(
2018
).
36.
P.
del Mazo-Sevillano
,
A.
Aguado
,
E.
Jiménez
,
Y. V.
Suleimanov
, and
O.
Roncero
, “
Quantum roaming in the complex-forming mechanism of the reactions of OH with formaldehyde and methanol at low temperature and zero pressure: A ring polymer molecular dynamics approach
,”
J. Phys. Chem. Lett.
10
,
1900
1907
(
2019
).
37.
F.
Naumkin
,
P.
del Mazo-Sevillano
,
A.
Aguado
,
Y. V.
Suleimanov
, and
O.
Roncero
, “
Zero- and high-pressure mechanisms in the complex forming reactions of OH with methanol and formaldehyde at low temperatures
,”
ACS Earth Space Chem.
3
,
1158
(
2019
).
38.
I. S.
Novikov
,
Y. V.
Suleimanov
, and
A. V.
Shapeev
, “
Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning
,”
Phys. Chem. Chem. Phys.
20
,
29503
29512
(
2018
).
39.
A.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
40.
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
Machine learning of molecular properties: Locality and active learning
,”
J. Chem. Phys.
148
,
241727
(
2018
).
41.
N.
Artrith
and
J.
Behler
, “
High-dimensional neural network potentials for metal surfaces: A prototype study for copper
,”
Phys. Rev. B
85
,
045439
(
2012
).
42.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
43.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
44.
R.
Jinnouchi
,
J.
Lahnsteiner
,
F.
Karsai
,
G.
Kresse
, and
M.
Bokdam
, “
Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference
,”
Phys. Rev. Lett.
112
,
225701
(
2019
).
45.
E. V.
Podryabinkin
and
A. V.
Shapeev
, “
Active learning of linearly parametrized interatomic potentials
,”
Comput. Mater. Sci.
140
,
171
180
(
2017
).
46.
I.
Novoselov
,
A.
Yanilkin
,
A.
Shapeev
, and
E.
Podryabinkin
, “
Moment tensor potentials as a promising tool to study diffusion processes
,”
Comput. Mater. Sci.
164
,
46
56
(
2019
).
47.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B
99
,
064114
(
2019
).
48.
K.
Gubaev
,
E. V.
Podryabinkin
,
G. L.
Hart
, and
A. V.
Shapeev
, “
Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
,”
Comput. Mater. Sci.
156
,
148
156
(
2019
).
49.
T.
Kostiuchenko
,
F.
Körmann
,
J.
Neugebauer
, and
A.
Shapeev
, “
Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials
,”
npj Comput. Mater.
5
,
55
(
2019
).
50.
Y.
Suleimanov
,
J.
Allen
, and
W.
Green
, “
RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics
,”
Comput. Phys. Commun.
184
,
833
840
(
2013
).
51.
C. H.
Bennett
,
Molecular Dynamics and Transition State Theory: The Simulation of Infrequent Events
(
American Chemical Society
,
1977
), Chap. 4, pp.
63
97
.
52.
D.
Chandler
, “
Statistical mechanics of isomerization dynamics in liquids and the transition state approximation
,”
J. Chem. Phys.
68
,
2959
(
1978
).
53.
M. J.
Gillan
, “
Quantum simulation of hydrogen in metals
,”
Phys. Rev. Lett.
58
,
563
566
(
1987
).
54.
M. J.
Gillan
, “
Quantum-classical crossover of the transition rate in the damped double well
,”
J. Phys. C: Solid State Phys.
20
,
3621
3641
(
1987
).
55.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
, “
Rigorous formulation of quantum transition state theory and its dynamical corrections
,”
J. Chem. Phys.
91
,
7749
(
1989
).
56.
S.
Goreinov
,
I.
Oseledets
,
D.
Savostyanov
,
E.
Tyrtyshnikov
, and
N.
Zamarashkin
, “
How to find a good submatrix
,” in
Matrix Methods: Theory, Algorithms and Applications
, Dedicated to the Memory of Gene Golub (
World Scientific
,
2010
), pp.
247
256
.
57.
J.
Kästner
and
W.
Thiel
, “
Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration”
,”
J. Chem. Phys.
123
,
144104
(
2005
).
58.
J.
Kästner
and
W.
Thiel
, “
Analysis of the statistical error in umbrella sampling simulations by umbrella integration
,”
J. Chem. Phys.
124
,
234106
(
2006
).
59.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
(
1980
).
60.
H. C.
Andersen
, “
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
,”
Int. J. Comput. Phys.
52
,
24
34
(
1983
).
61.
T.-S.
Ho
,
T.
Hollebeek
,
H.
Rabitz
,
S.
Der Chao
,
R. T.
Skodje
,
A. S.
Zyubin
, and
A. M.
Mebel
, “
A globally smooth ab initio potential surface of the 1A state for the reaction S(1D) + H2
,”
J. Chem. Phys.
116
,
4124
4134
(
2002
).
You do not currently have access to this content.