We calculate the optical properties of InP and CdSe colloidal quantum dots (QDs) within the framework of the atomic effective pseudopotential approach and the screened configuration interaction theory. We obtain an excellent agreement with experiment with our microscopic and space-dependent screening function where the dielectric constant varies in real space with a sharp transition (width of ≈0.18 nm) from the QD material high-frequency bulk value inside the QD to the solvent or passivant high-frequency value outside. We obtain a reasonable agreement (with deviations less than 140 meV) for a computationally less demanding solvent-independent screening using the full high-frequency bulk screening, in contrast to the more commonly used reduced QD radius-dependent screening constant. We show theoretically that for QDs passivated with long-chained organic molecules, the influence of the solvent on the optical gap is in the range of 10 meV, while QDs passivated with short ligands can experience shifts in the order of 100 meV. Experiments on CdSe QDs passivated with octadecylphosphonic acid (ODPA, long-chained ligand) in two different solvents (toluene and chloroform) confirm the bandgap dependence. While the optical gap is weakly affected by the environment, the quasiparticle gap and the exciton binding energy show a strong environmental dependence. Finally, we show that the optical bandgap does not depend significantly on the crystal structure (wurtzite or zincblende) or the morphological details (faceted or “spherical” shape).

1.
Colloidal Quantum Dot Optoelectronics and Photovoltaics
, edited by
G.
Konstantatos
and
E. H.
Sargent
(
Cambridge University Press
,
2013
).
2.
C. R.
Kagan
,
E.
Lifshitz
,
E. H.
Sargent
, and
D. V.
Talapin
, “
Building devices from colloidal quantum dots
,”
Science
353
(
6302
),
aac5523
(
2016
).
3.
B. B. T. S.
Mishra
,
B. B.
Patel
, and
S.
Tiwari
, “
Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery
,”
Nanomed.: Nanotechnol., Biol. Med.
6
(
1
),
9
24
(
2010
).
4.
B. A.
Kairdolf
,
A. M.
Smith
,
T. H.
Stokes
,
M. D.
Wang
,
A. N.
Young
, and
S.
Nie
, “
Semiconductor quantum dots for bioimaging and biodiagnostic applications
,”
Annu. Rev. Anal. Chem.
6
,
143
162
(
2013
).
5.
C. M.
Evans
,
L. C.
Cass
,
K. E.
Knowles
,
D. B.
Tice
,
R. P.
Chang
, and
E. A.
Weiss
, “
Review of the synthesis and properties of colloidal quantum dots: The evolving role of coordinating surface ligands
,”
J. Coord. Chem.
65
(
13
),
2391
2414
(
2012
).
6.
S. A.
Fischer
,
A. M.
Crotty
,
S. V.
Kilina
,
S. A.
Ivanovc
, and
S.
Tretiak
, “
Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals
,”
Nanoscale
4
(
3
),
904
914
(
2012
).
7.
N.
Yazdani
,
D.
Bozyigit
,
K.
Vuttivorakulchai
,
M.
Luisier
,
I.
Infante
, and
V.
Wood
, “
Tuning electron–phonon interactions in nanocrystals through surface termination
,”
Nano Lett.
18
(
4
),
2233
2241
(
2018
).
8.
J. H.
Mokkath
, “
Probing the role of capping ligands, ligand loss and solvent effects on the optoelectronic properties of CdS quantum dots
,”
J. Phys. Chem. Solids
131
,
10
14
(
2019
).
9.
J. R.
Cárdenas
and
G.
Bester
, “
Atomic effective pseudopotentials for semiconductors
,”
Phys. Rev. B
86
(
11
),
115332
(
2012
).
10.
F.
Zirkelbach
,
P. Y.
Prodhomme
,
P.
Han
,
R.
Cherian
, and
G.
Bester
, “
Large-scale atomic effective pseudopotential program including an efficient spin-orbit coupling treatment in real space
,”
Phys. Rev. B
91
(
7
),
075119
(
2015
).
11.
A.
Karpulevich
,
H.
Bui
,
D.
Antonov
,
P.
Han
, and
G.
Bester
, “
Nonspherical atomic effective pseudopotentials for surface passivation
,”
Phys. Rev. B
94
(
20
),
205417
(
2016
).
12.
C.
Delerue
,
M.
Lannoo
, and
G.
Allan
, “
Excitonic and quasiparticle gaps in Si nanocrystals
,”
Phys. Rev. Lett.
84
(
11
),
2457
2460
(
2000
).
13.
L.
Banyai
,
P.
Gilliot
,
Y. Z.
Hu
, and
S. W.
Koch
, “
Surface polarization instabilities of electron-hole pairs in semiconductor quantum dots
,”
Phys. Rev. B
45
(
24
),
14136
14142
(
1992
).
14.
D. R.
Penn
, “
Wave-number dependent dielectric function of semiconductors
,”
Phys. Rev.
128
(
5
),
2093
2097
(
1962
).
15.
A.
Franceschetti
,
H.
Fu
,
L.-W.
Wang
, and
A.
Zunger
, “
Many-body pseudopotential theory of excitons in InP and CdSe quantum dots
,”
Phys. Rev. B
60
(
3
),
1819
1829
(
1999
).
16.
O.
Madelung
,
Semiconductors: Data Handbook
(
Springer
,
2012
).
17.
Handbook Series on Semiconductor Parameters
, edited by
M. S.
Levinshtein
(
World Scientific
,
1997
).
18.
G.
Bester
, “
Electronic excitations in nanostructures: An empirical pseudopotential based approach
,”
J. Phys.: Condens. Matter
21
(
2
),
023202
(
2009
).
19.
L. E.
Brus
, “
A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites
,”
J. Chem. Phys.
79
(
11
),
5566
5571
(
1983
).
20.
A.
Franceschetti
and
A.
Zunger
, “
Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots
,”
Phys. Rev. B
62
(
4
),
2614
2623
(
2000
).
21.
M. G.
Bawendi
,
M. L.
Steigerwald
, and
L. E.
Brus
, “
The quantum mechanics of larger semiconductor clusters (“quantum dots”)
,”
Annu. Rev. Phys. Chem.
41
(
1
),
477
496
(
1990
).
22.
H.
Haken
, “
Kopplung nichtrelativistischer teilchen mit einem quantisierten feld
,”
Il Nuovo Cimento
3
(
6
),
1230
1253
(
1956
).
23.
R.
Resta
, “
Thomas-fermi dielectric screening in semiconductors
,”
Phys. Rev. B
16
(
6
),
2717
2722
(
1977
).
24.
X.
Cartoixà
and
L.-W.
Wang
, “
Microscopic dielectric response functions in semiconductor quantum dots
,”
Phys. Rev. Lett.
94
(
23
),
236804
(
2005
).
25.
C.
Delerue
,
M.
Lannoo
, and
G.
Allan
, “
Concept of dielectric constant for nanosized systems
,”
Phys. Rev. B
68
(
11
),
115411
(
2003
).
26.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors: Physics and Materials Properties
, 4th ed. (
Springer
,
2010
).
27.
D.
Mourad
,
A.
Guille
,
T.
Aubert
,
E.
Brainis
, and
Z.
Hens
, “
Random-alloying induced signatures in the absorption spectra of colloidal quantum dots
,”
Chem. Mater.
26
,
6852
6862
(
2014
).
28.
D.
Mourad
, “
Structure-related optical fingerprints in the absorption spectra of colloidal quantum dots: Random alloy vs. core/shell systems
,”
J. Appl. Phys.
121
,
014307
(
2017
).
29.
Y.
Al-Douri
,
H.
Baaziz
,
Z.
Charifi
,
R.
Khenata
,
U.
Hashim
, and
M.
Al-Jassim
, “
Further optical properties of CdX (X = S, Te) compounds under quantum dot diameter effect: Ab initio method
,”
Renewable Energy
45
,
232
236
(
2012
).
30.
L.
Ding
,
T. P.
Chen
,
Y.
Liu
,
C. Y.
Ng
, and
S.
Fung
, “
Optical properties of silicon nanocrystals embedded in a SiO2 matrix
,”
Phys. Rev. B
72
,
125419
(
2005
).
31.
Y.
Al-Douri
,
N.
Badi
, and
C. H.
Voon
, “
Synthesis of carbon-based quantum dots from starch extracts: Optical investigations
,”
Luminescence
33
(
2
),
260
266
(
2018
).
32.
C.
Murray
,
D. J.
Norris
, and
M. G.
Bawendi
, “
Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
,”
J. Am. Chem. Soc.
115
(
19
),
8706
8715
(
1993
).
33.
H.
Fu
and
A.
Zunger
, “
Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots
,”
Phys. Rev. B
55
(
3
),
1642
1653
(
1997
).
34.
R. W.
Meulenberg
,
J. R.
Lee
,
A.
Wolcott
,
J. Z.
Zhang
,
L. J.
Terminello
, and
T.
Van Buuren
, “
Determination of the exciton binding energy in CdSe quantum dots
,”
ACS Nano
3
(
2
),
325
330
(
2009
).
35.
O. I.
Mićić
,
S. P.
Ahrenkiel
, and
A. J.
Nozik
, “
Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films
,”
Appl. Phys. Lett.
78
(
25
),
4022
4024
(
2001
).
36.
E.
Cho
,
H.
Jang
,
J.
Lee
, and
E.
Jang
, “
Modeling on the size dependent properties of InP quantum dots: A hybrid functional study
,”
Nanotechnology
24
,
215201
(
2013
).
37.
Z.
Ning
,
M.
Molnár
,
Y.
Chen
,
P.
Friberg
,
L.
Gan
,
H.
Ågren
, and
Y.
Fu
, “
Role of surface ligands in optical properties of colloidal CdSe/CdS quantum dots
,”
Phys. Chem. Chem. Phys.
13
,
5848
5854
(
2011
).
38.
S. N.
Inamdar
,
P. P.
Ingole
, and
S. K.
Haram
, “
Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry
,”
ChemPhysChem
9
,
2574
2579
(
2008
).
39.
J.
Jasieniak
,
L.
Smith
,
J.
Van Embden
,
P.
Mulvaney
, and
M.
Califano
, “
Re-examination of the size-dependent absorption properties of CdSe quantum dots
,”
J. Phys. Chem. C
113
,
19468
19474
(
2009
).
40.
W. W.
Yu
,
L.
Qu
,
W.
Guo
, and
X.
Peng
, “
Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals
,”
Chem. Mater.
15
,
2854
2860
(
2003
).
41.
R. K.
Čapek
,
I.
Moreels
,
K.
Lambert
,
D.
De Muynck
,
Q.
Zhao
,
A.
Van Tomme
,
F.
Vanhaecke
, and
Z.
Hens
, “
Optical properties of zincblende cadmium selenide quantum dots
,”
J. Phys. Chem. C
114
,
6371
6376
(
2010
).
You do not currently have access to this content.