Recently, it was shown that the calculation of quasiparticle energies using the G0W0 approximation can be performed without computing explicitly any virtual electronic states, by expanding the Green function and screened Coulomb interaction in terms of the eigenstates of the static dielectric matrix. Avoiding the evaluation of virtual electronic states leads to improved efficiency and ease of convergence of G0W0 calculations. Here, we propose a further improvement of the efficiency of these calculations, based on an approximation of density-density response functions of molecules and solids. The approximation relies on the calculation of a subset of eigenvectors of the dielectric matrix using the kinetic operator instead of the full Hamiltonian, and it does not lead to any substantial loss of accuracy for the quasiparticle energies. The computational savings introduced by this approximation depend on the system, and they become more substantial as the number of electrons increases.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
2004
).
4.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
659
(
2002
).
5.
R. M.
Martin
,
L.
Reining
, and
D. M.
Ceperley
,
Interacting Electrons
(
Cambridge University Press
,
2016
).
6.
L.
Hedin
, “
New method for calculating the one-particle green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
(
1965
).
7.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
 et al., “
GW 100: Benchmarking G0W0 for molecular systems
,”
J. Chem. Theory Comput.
11
,
5665
5687
(
2015
).
8.
E.
Maggio
,
P.
Liu
,
M. J.
van Setten
, and
G.
Kresse
, “
GW100: A plane wave perspective for small molecules
,”
J. Chem. Theory Comput.
13
,
635
648
(
2017
).
9.
M.
Govoni
and
G.
Galli
, “
GW100: Comparison of methods and accuracy of results obtained with the west code
,”
J. Chem. Theory Comput.
14
,
1895
1909
(
2018
).
10.
P.
Scherpelz
,
M.
Govoni
,
I.
Hamada
, and
G.
Galli
, “
Implementation and validation of fully relativistic GW calculations: Spin–orbit coupling in molecules, nanocrystals, and solids
,”
J. Chem. Theory Comput.
12
,
3523
3544
(
2016
).
11.
N. P.
Brawand
,
M.
Vörös
,
M.
Govoni
, and
G.
Galli
, “
Generalization of dielectric-dependent hybrid functionals to finite systems
,”
Phys. Rev. X
6
,
041002
(
2016
).
12.
D.
Golze
,
M.
Dvorak
, and
P.
Rinke
, “
The GW compendium: A practical guide to theoretical photoemission spectroscopy
,”
Front. Chem.
7
,
377
(
2019
).
13.
M. S.
Hybertsen
and
S. G.
Louie
, “
First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators
,”
Phys. Rev. Lett.
55
,
1418
(
1985
).
14.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation and the band gap in ionic crystals
,”
Phys. Rev. B
32
,
7005
7008
(
1985
).
15.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
,
5390
(
1986
).
16.
G.
Strinati
,
H.
Mattausch
, and
W.
Hanke
, “
Dynamical correlation effects on the quasiparticle Bloch states of a covalent crystal
,”
Phys. Rev. Lett.
45
,
290
(
1980
).
17.
G.
Strinati
,
H.
Mattausch
, and
W.
Hanke
, “
Dynamical aspects of correlation corrections in a covalent crystal
,”
Phys. Rev. B
25
,
2867
(
1982
).
18.
S. L.
Adler
, “
Quantum theory of the dielectric constant in real solids
,”
Phys. Rev.
126
,
413
(
1962
).
19.
N.
Wiser
, “
Dielectric constant with local field effects included
,”
Phys. Rev.
129
,
62
(
1963
).
20.
G.
Samsonidze
,
M.
Jain
,
J.
Deslippe
,
M. L.
Cohen
, and
S. G.
Louie
, “
Simple approximate physical orbitals for GW quasiparticle calculations
,”
Phys. Rev. Lett.
107
,
186404
(
2011
).
21.
F.
Bruneval
and
X.
Gonze
, “
Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems
,”
Phys. Rev. B
78
,
085125
(
2008
).
22.
W.
Gao
,
W.
Xia
,
X.
Gao
, and
P.
Zhang
, “
Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions
,”
Sci. Rep.
6
,
36849
(
2016
).
23.
J.
Soininen
,
J.
Rehr
, and
E. L.
Shirley
, “
Electron self-energy calculation using a general multi-pole approximation
,”
J. Phys.: Condens. Matter
15
,
2573
(
2003
).
24.
H. F.
Wilson
,
F.
Gygi
, and
G.
Galli
, “
Efficient iterative method for calculations of dielectric matrices
,”
Phys. Rev. B
78
,
113303
(
2008
).
25.
H. F.
Wilson
,
D.
Lu
,
F.
Gygi
, and
G.
Galli
, “
Iterative calculations of dielectric eigenvalue spectra
,”
Phys. Rev. B
79
,
245106
(
2009
).
26.
H.-V.
Nguyen
,
T. A.
Pham
,
D.
Rocca
, and
G.
Galli
, “
Improving accuracy and efficiency of calculations of photoemission spectra within the many-body perturbation theory
,”
Phys. Rev. B
85
,
081101
(
2012
).
27.
T. A.
Pham
,
H.-V.
Nguyen
,
D.
Rocca
, and
G.
Galli
, “
GW calculations using the spectral decomposition of the dielectric matrix: Verification, validation, and comparison of methods
,”
Phys. Rev. B
87
,
155148
(
2013
).
28.
M.
Govoni
and
G.
Galli
, “
Large scale GW calculations
,”
J. Chem. Theory Comput.
11
,
2680
2696
(
2015
).
29.
R.
Sternheimer
, “
Electronic polarizabilities of ions from the Hartree-Fock wave functions
,”
Phys. Rev.
96
,
951
(
1954
).
30.
G.
Galli
and
A.
Pasquarello
, “
First-principles molecular dynamics
,” in
Computer Simulation in Chemical Physics
, edited by
M. P.
Allen
and
D. J.
Tildesley
(
Springer
,
The Netherlands
,
1993
), pp.
261
313
.
31.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
32.
H.
Ma
,
M.
Govoni
,
F.
Gygi
, and
G.
Galli
, “
A finite-field approach for GW calculations beyond the random phase approximation
,”
J. Chem. Theory Comput.
15
,
154
164
(
2018
).
33.
D.
Lu
,
F.
Gygi
, and
G.
Galli
, “
Dielectric properties of ice and liquid water from first-principles calculations
,”
Phys. Rev. Lett.
100
,
147601
(
2008
).
34.
J.
Lindhard
, “
On the properties of a gas of charged particles
,”
Dan. Vid. Selsk Mat.-Fys. Medd.
28
,
8
(
1954
).
35.
D.
Rocca
, “
Random-phase approximation correlation energies from lanczos chains and an optimal basis set: Theory and applications to the benzene dimer
,”
J. Chem. Phys.
140
,
18A501
(
2014
).
36.
D.
Lu
,
Y.
Li
,
D.
Rocca
, and
G.
Galli
, “
Ab initio calculation of van der Waals bonded molecular crystals
,”
Phys. Rev. Lett.
102
,
206411
(
2009
).
37.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al., “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
38.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
40.
M.
Schlipf
and
F.
Gygi
, “
Optimization algorithm for the generation of ONCV pseudopotentials
,”
Comput. Phys. Commun.
196
,
36
44
(
2015
).
41.
D.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
42.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
, “
Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities
,”
J. Chem. Phys.
109
,
42
55
(
1998
).
43.

Here, we did not attempt to solve the problem on how to accurately compute resonant molecular energy levels: our goal is to compare results obtained with solutions of the Sternheimer equation using the full Hamiltonian [Eq. (1)] and approximate solutions using only the kinetic operator [Eq. (4)]. As long as the results obtained with the two procedures agree, we consider the results obtained from Eq. (4) as accurate.

44.
NIST Computational Chemistry Comparison and Benchmark Databasxe, Russell D. Johnson III NIST Standard Reference Database Number 101, Release 18,
2016
.
45.
X.
Qian
,
P.
Umari
, and
N.
Marzari
, “
First-principles investigation of organic photovoltaic materials C60, C70,[C60]PCBM, and bis-[C60]PCBM using a many-body G0W0-Lanczos approach
,”
Phys. Rev. B
91
,
245105
(
2015
).
46.
E. P.
Linstrom
and
W.
Mallard
,
NIST Chemistry WebBook: NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
).
47.
D. L.
Lichtenberger
,
K. W.
Nebesny
,
C. D.
Ray
,
D. R.
Huffman
, and
L. D.
Lamb
, “
Valence and core photoelectron spectroscopy of C60, buckminsterfullerene
,”
Chem. Phys. Lett.
176
,
203
208
(
1991
).
48.
T.
Anh Pham
,
T.
Li
,
H.-V.
Nguyen
,
S.
Shankar
,
F.
Gygi
, and
G.
Galli
, “
Band offsets and dielectric properties of the amorphous Si3N4/Si(100) interface: A first-principles study
,”
Appl. Phys. Lett.
102
,
241603
(
2013
).
49.
T.
Yamasaki
,
C.
Kaneta
,
T.
Uchiyama
,
T.
Uda
, and
K.
Terakura
, “
Geometric and electronic structures of SiO2/Si(001) interfaces
,”
Phys. Rev. B
63
,
115314
(
2001
).
50.
C. G.
Van de Walle
and
R. M.
Martin
, “
Theoretical study of band offsets at semiconductor interfaces
,”
Phys. Rev. B
35
,
8154
8165
(
1987
).
51.
R.
Sundararaman
and
Y.
Ping
, “
First-principles electrostatic potentials for reliable alignment at interfaces and defects
,”
J. Chem. Phys.
146
,
104109
(
2017
).
52.
J. W.
Keister
,
J. E.
Rowe
,
J. J.
Kolodziej
,
H.
Niimi
,
T. E.
Madey
, and
G.
Lucovsky
, “
Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemission spectroscopy
,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
17
,
1831
1835
(
1999
).
53.
V. A.
Gritsenko
,
A. V.
Shaposhnikov
,
W.
Kwok
,
H.
Wong
, and
G. M.
Jidomirov
, “
Valence band offset at silicon/silicon nitride and silicon nitride/silicon oxide interfaces
,”
Thin Solid Films
437
,
135
139
(
2003
).
54.
M.
Higuchi
,
S.
Sugawa
,
E.
Ikenaga
,
J.
Ushio
,
H.
Nohira
,
T.
Maruizumi
,
A.
Teramoto
,
T.
Ohmi
, and
T.
Hattori
, “
Subnitride and valence band offset at Si3N4/Si interface formed using nitrogen-hydrogen radicals
,”
Appl. Phys. Lett.
90
,
123114
(
2007
).
55.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
).
56.
A. M.
Goodman
, “
Photoemission of electrons and holes into silicon nitride
,”
Appl. Phys. Lett.
13
,
275
277
(
1968
).
57.
J.
Bauer
, “
Optical properties, band gap, and surface roughness of Si3N4
,”
Phys. Status Solidi (A)
39
,
411
418
(
1977
).
58.
S. V.
Deshpande
,
E.
Gulari
,
S. W.
Brown
, and
S. C.
Rand
, “
Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition
,”
J. Appl. Phys.
77
,
6534
6541
(
1995
).

Supplementary Material

You do not currently have access to this content.