We report a database consisting of the putative minima and ∼3.2 × 106 local minima lying within 5 kcal/mol from the putative minima for water clusters of sizes n = 3–25 using an improved version of the Monte Carlo temperature basin paving (MCTBP) global optimization procedure in conjunction with the ab initio based, flexible, polarizable Thole-Type Model (TTM2.1-F, version 2.1) interaction potential for water. Several of the low-lying structures, as well as low-lying penta-coordinated water networks obtained with the TTM2.1-F potential, were further refined at the Møller-Plesset second order perturbation (MP2)/aug-cc-pVTZ level of theory. In total, we have identified 3 138 303 networks corresponding to local minima of the clusters n = 3–25, whose Cartesian coordinates and relative energies can be obtained from the webpage https://sites.uw.edu/wdbase/. Networks containing penta-coordinated water molecules start to appear at n = 11 and, quite surprisingly, are energetically close (within 1–3 kcal/mol) to the putative minima, a fact that has been confirmed from the MP2 calculations. This large database of water cluster minima spanning quite dissimilar hydrogen bonding networks is expected to influence the development and assessment of the accuracy of interaction potentials for water as well as lower scaling electronic structure methods (such as different density functionals). Furthermore, it can also be used in conjunction with data science approaches (including but not limited to neural networks and machine and deep learning) to understand the properties of water, nature’s most important substance.

1.
N.
Pugliano
and
R. J.
Saykally
,
Science
257
(
5078
),
1937
1940
(
1992
).
2.
J. D.
Cruzan
,
L. B.
Braly
,
K.
Liu
,
M. G.
Brown
,
J. G.
Loeser
, and
R. J.
Saykally
,
Science
271
(
5245
),
59
62
(
1996
).
3.
K.
Liu
,
M. G.
Brown
,
J. D.
Cruzan
, and
R. J.
Saykally
,
Science
271
(
5245
),
62
64
(
1996
).
4.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
,
J. Chem. Phys.
53
(
12
),
4544
4554
(
1970
).
5.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
(
10
),
8037
8040
(
1993
).
6.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
(
11
),
8774
8792
(
1993
).
7.
S. S.
Xantheas
,
J. Chem. Phys.
100
(
10
),
7523
7534
(
1994
).
8.
S. S.
Xantheas
,
Chem. Phys.
258
(
2-3
),
225
231
(
2000
).
9.
K.
Liu
,
M. G.
Brown
,
C.
Carter
,
R. J.
Saykally
,
J. K.
Gregory
and
D. C.
Clary
,
Nature
381
(
6582
),
501
503
(
1996
);
K.
Liu
,
J. D.
Cruzan
, and
R. J.
Saykally
,
Science
271
,
929
(
1996
).
10.
K.
Kim
,
K. D.
Jordan
, and
T. S.
Zwier
,
J. Am. Chem. Soc.
116
(
25
),
11568
11569
(
1994
).
11.
J. O.
Richardson
,
C.
Perez
,
S.
Lobsiger
,
A. A.
Reid
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
,
D. J.
Wales
,
B. H.
Pate
, and
S. C.
Althorpe
,
Science
351
(
6279
),
1310
1313
(
2016
).
12.
C.
Perez
,
M. T.
Muckle
,
D. P.
Zaleski
,
N. A.
Seifert
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Science
336
(
6083
),
897
901
(
2012
).
13.
C. C.
Pradzynski
,
R. M.
Forck
,
T.
Zeuch
,
P.
Slavicek
, and
U.
Buck
,
Science
337
(
6101
),
1529
1532
(
2012
).
14.
V.
Buch
,
B.
Sigurd
,
J. P.
Devlin
,
U.
Buck
, and
J. K.
Kazimirski
,
Int. Rev. Phys. Chem.
23
(
3
),
375
433
(
2007
).
15.
C. C.
Pradzynski
,
C. W.
Dierking
,
F.
Zurheide
,
R. M.
Forck
,
U.
Buck
,
T.
Zeuch
, and
S. S.
Xantheas
,
Phys. Chem. Chem. Phys.
16
(
48
),
26691
26696
(
2014
).
16.
T.
James
,
D. J.
Wales
, and
J.
Hernández-Rojas
,
Chem. Phys. Lett.
415
(
4-6
),
302
307
(
2005
).
17.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
(
28
),
5111
5116
(
1997
).
18.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
(
1-2
),
65
72
(
1998
).
19.
M. P.
Hodges
and
D. J.
Wales
,
Chem. Phys. Lett.
324
(
4
),
279
288
(
2000
).
20.
S.
Maheshwary
,
N.
Patel
,
N.
Sathyamurthy
,
A. D.
Kulkarni
, and
S. R.
Gadre
,
J. Phys. Chem. A
105
(
46
),
10525
10537
(
2001
).
21.
C. J.
Tsai
and
K. D.
Jordan
,
J. Phys. Chem.
97
(
20
),
5208
5210
(
1993
).
22.
A. M.
Tokmachev
,
A. L.
Tchougreeff
, and
R.
Dronskowski
,
ChemPhysChem
11
(
2
),
384
388
(
2010
).
23.
S.
Kazachenko
and
A. J.
Thakkar
,
Chem. Phys. Lett.
476
(
1-3
),
120
124
(
2009
).
24.
S.
Kazachenko
and
A. J.
Thakkar
,
J. Chem. Phys.
138
(
19
),
194302
(
2013
).
25.
J. L.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
26.
J. L.
Abascal
,
E.
Sanz
,
R.
Garcia Fernandez
, and
C.
Vega
,
J. Chem. Phys.
122
(
23
),
234511
(
2005
).
27.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Phys. Chem. A
110
(
11
),
4100
4106
(
2006
).
28.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Chem. Phys.
128
(
7
),
074506
(
2008
).
29.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Phys. Chem. A
110
(
2
),
445
451
(
2006
).
30.
A.
Shank
,
Y.
Wang
,
A.
Kaledin
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
130
(
14
),
144314
(
2009
).
31.
Y.
Wang
and
J. M.
Bowman
,
Chem. Phys. Lett.
491
(
1-3
),
1
10
(
2010
).
32.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
(
12
),
5395
5403
(
2013
).
33.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
,
J. Phys. Chem. Lett.
3
(
24
),
3765
3769
(
2012
).
34.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
(
8
),
2906
2910
(
2014
).
35.
U. H.
Hansmann
and
L. T.
Wille
,
Phys. Rev. Lett.
88
(
6
),
068105
(
2002
).
36.
L.
Zhan
,
J. Z.
Chen
, and
W. K.
Liu
,
Phys. Rev. E
73
(
1
),
015701
(
2006
).
37.
A.
Rakshit
and
P.
Bandyopadhyay
,
Comput. Theor. Chem.
1021
,
206
214
(
2013
).
38.
S.
Shanker
and
P.
Bandyopadhyay
,
J. Phys. Chem. A
115
(
42
),
11866
11875
(
2011
).
39.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
40.
S.
Yoo
,
M. V.
Kirov
, and
S. S.
Xantheas
,
J. Am. Chem. Soc.
131
,
7564
7566
(
2009
).
41.
K. E.
Riley
,
M.
Pitonak
,
P.
Jurecka
, and
P.
Hobza
,
Chem. Rev.
110
(
9
),
5023
5063
(
2010
).
42.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
(
3
),
415
432
(
2005
).
43.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
12
(
9
),
4303
4325
(
2016
).
44.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
(
25
),
5656
5667
(
2005
).
45.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
(
1-3
),
215
241
(
2008
).
46.
M.
Korth
and
S.
Grimme
,
J. Chem. Theory Comput.
5
(
4
),
993
1003
(
2009
).
47.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
(
3
),
1580
1591
(
2013
).
48.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
49.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
6806
(
1992
).
50.
A.
Rakshit
,
T.
Yamaguchi
,
T.
Asada
, and
P.
Bandyopadhyay
,
RSC Adv.
7
(
30
),
18401
18417
(
2017
).
51.
H.
Partridge
and
D. W.
Schwenke
,
J. Chem. Phys.
106
,
4618
(
1997
).
52.
B. T.
Thole
,
Chem. Phys.
59
(
3
),
341
(
1981
).
53.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
5115
(
2002
).
54.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
1479
(
2002
).
55.
A.
Lagutschenkov
,
G. S.
Fanourgakis
,
G.
Niedner-Schatteburg
and
S. S.
Xantheas
,
J. Chem. Phys.
122
(
19
),
194310
(
2005
).
56.
G. S.
Fanourgakis
,
E.
Apra
, and
S. S.
Xantheas
,
J. Chem. Phys.
121
(
6
),
2655
2663
(
2004
).
57.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Chem. Phys.
124
(
17
),
174504
(
2006
).
58.
G. S.
Fanourgakis
,
G. K.
Schenter
, and
S. S.
Xantheas
,
J. Chem. Phys.
125
(
14
),
141102
(
2006
).
59.
F.
Paesani
,
S.
Iuchi
, and
G. A.
Voth
,
J. Chem. Phys.
127
(
7
),
074506
(
2007
).
60.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
(
7
),
618
622
(
1934
).
61.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
, and
T. L.
Windus
,
Comput. Phys. Commun.
181
(
9
),
1477
1489
(
2010
).
62.
S. S.
Xantheas
,
C. J.
Burnham
, and
R. J.
Harrison
,
J. Chem. Phys.
116
,
1493
(
2002
).
63.
E.
Miliordos
,
E.
Aprà
, and
S. S.
Xantheas
,
J. Chem. Phys.
139
(
11
),
114302
(
2013
).
64.
E.
Miliordos
and
S. S.
Xantheas
,
J. Chem. Phys.
142
,
234303
(
2015
).
65.
T. P.
Radhakrishnan
and
W. C.
Herndon
,
J. Phys. Chem.
95
(
26
),
10609
10617
(
1991
).
66.
R. M.
Shields
,
B.
Temelso
,
K. A.
Archer
,
T. E.
Morrell
, and
G. C.
Shields
,
J. Phys. Chem. A
114
(
43
),
11725
11737
(
2010
).
67.
P.
Qian
,
W.
Song
,
L.
Lu
, and
Z.
Yang
,
Int. J. Quantum Chem.
110
(
10
),
1923
1937
(
2010
).
68.
S.
Maeda
and
K.
Ohno
,
J. Phys. Chem. A
111
(
20
),
4527
4534
(
2007
).
69.
M. V.
Kirov
,
G. S.
Fanourgakis
, and
S. S.
Xantheas
,
Chem. Phys. Lett.
461
(
4-6
),
180
188
(
2008
).
70.
S.
Bulusu
,
S.
Yoo
,
E.
Apra
,
S.
Xantheas
, and
X. C.
Zeng
,
J. Phys. Chem. A
110
(
42
),
11781
11784
(
2006
).
71.
A. K.
Soper
,
Chem. Phys.
258
(
2
),
121
137
(
2000
).
72.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
,
Nature
354
(
6350
),
218
(
1991
).
73.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
,
J. Chem. Phys.
96
(
5
),
3857
3865
(
1992
).
74.
R.
Kumar
,
J.
Schmidt
, and
J.
Skinner
,
J. Chem. Phys.
126
(
20
),
204107
(
2007
).
75.
K.
Oka
,
T.
Shibue
,
N.
Sugimura
,
Y.
Watabe
,
B.
Winther-Jensen
, and
H.
Nishide
,
Sci. Rep.
9
(
1
),
223
(
2019
).
You do not currently have access to this content.