The identification of the most important descriptors that drive the activation CO2 on transition-metal (TM) catalysts is a crucial step toward the conversion of CO2 into value-added chemicals; however, our atomistic understanding is far from satisfactory. Thus, aiming at the potential use of TM clusters in the conversion of CO2, we report density functional theory calculations of CO2, CO, H2O, and H2 adsorption on TM13 clusters (TM = Fe, Co, Ni, and Cu). Among the descriptors to evaluate the activation of the studied molecules, we found that the bond lengths increase, angles decrease, and their energetic variations upon the adsorption are the most important ones. From the structural response in anionic gas-phase molecules, the charge transfer toward CO2 and CO is pointed as relevant in their activation, and our results and analyses suggest that the adsorption on 3d TM13 clusters promote this charge donation process, decreasing in the order Fe13 > Co13 > Ni13 > Cu13. For CO2 and CO on Cu13, the activation was observed for highest energy configurations, indicating that is necessarily an additional driving force to occur the molecular activation on this material. Also, energetic parameters, adsorption energy, and interaction energy indicated that the strength of the adsorption is not necessarily proportional to the activation; it is difficult to point out these parameters as descriptors. Our results also provide interesting insights about steps of the CO2 reduction mechanism within the context of the modified Fischer–Tropsch synthesis.

1.
S.
Solomon
,
G.-K.
Plattner
,
R.
Knutti
, and
P.
Friedlingstein
, “
Irreversible climate change due to carbon dioxide emissions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
1704
1709
(
2009
).
2.
S.
Solomon
,
J. S.
Daniel
,
T. J.
Sanford
,
D. M.
Murphy
,
G.-K.
Plattner
,
R.
Knutti
, and
P.
Friedlingstein
, “
Persistence of climate changes due to a range of greenhouse gases
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
18354
18359
(
2010
).
3.
H.
Yang
,
C.
Zhang
,
P.
Gao
,
H.
Wang
,
X.
Li
,
L.
Zhong
,
W.
Wei
, and
Y.
Sun
, “
A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons
,”
Catal. Sci. Technol.
7
,
4580
4598
(
2017
).
4.
M. D.
Porosoff
,
B.
Yan
, and
J. G.
Chen
, “
Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities
,”
Energy Environ. Sci.
9
,
62
73
(
2016
).
5.
J.
Ko
,
B.-K.
Kim
, and
J. W.
Han
, “
Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces
,”
J. Phys. Chem. C
120
,
3438
3447
(
2016
).
6.
F.
Solymosi
, “
The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces
,”
J. Mol. Catal. A: Chem.
65
,
337
358
(
1991
).
7.
U.
Burghaus
, “
Surface chemistry of CO2 – adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum
,”
Prog. Surf. Sci.
89
,
161
217
(
2014
).
8.
J.
Toyir
,
P. R.
de la Piscina
,
J. L. G.
Fierro
, and
N.
Homs
, “
Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter
,”
Appl. Catal., B
29
,
207
215
(
2001
).
9.
F.
Fazlollahi
,
M.
Sarkari
,
A.
Zare
,
A. A.
Mirzaei
, and
H.
Atashi
, “
Development of a kinetic model for Fischer–Tropsch synthesis over Co/Ni/Al2O3 catalyst
,”
J. Ind. Eng. Chem.
18
,
1223
1232
(
2012
).
10.
S.
Posada-Pérez
,
P. J.
Ramírez
,
R. A.
Gutiérrez
,
D. J.
Stacchiola
,
F.
Viñes
,
P.
Liu
,
F.
Illas
, and
J. A.
Rodriguez
, “
The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: Mechanism for admetal induced change in the selectivity and activity
,”
Catal. Sci. Technol.
6
,
6766
6777
(
2016
).
11.
P. A.
Chernavskii
,
V. O.
Kazak
,
G. V.
Pankina
,
Y. D.
Perfiliev
,
T.
Li
,
M.
Virginie
, and
A. Y.
Khodakov
, “
Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer–Tropsch synthesis
,”
Catal. Sci. Technol.
7
,
2325
2334
(
2017
).
12.
L.
Liu
,
A. V.
Puga
,
J.
Cored
,
P.
Concepción
,
V.
Pérez-Dieste
,
H.
García
, and
A.
Corma
, “
Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites
,”
Appl. Catal., B
235
,
186
196
(
2018
).
13.
E.
Vera
,
Y.
Duan
, and
H.
Pfeiffer
, “
CO2–H2O capture and cyclability on sodium cobaltate at low temperatures (30–80 °C): Experimental and theoretical analysis
,”
Energy Technol.
7
,
1800527
(
2019
).
14.
M.-D.
Lee
,
J.-F.
Lee
, and
C.-S.
Chang
, “
Hydrogenation of carbon dioxide on unpromoted and potassium-promoted iron catalysts
,”
Bull. Chem. Soc. Jpn.
62
,
2756
2758
(
1989
).
15.
H. D.
Willauer
,
R.
Ananth
,
M. T.
Olsen
,
D. M.
Drab
,
D. R.
Hardy
, and
F. W.
Williams
, “
Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor
,”
J. CO2 Util.
3-4
,
56
64
(
2013
).
16.
T.
Riedel
,
G.
Schaub
,
K.-W.
Jun
, and
K.-W.
Lee
, “
Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst
,”
Ind. Eng. Chem. Res.
40
,
1355
1363
(
2001
).
17.
C.
Liu
,
T. R.
Cundari
, and
A. K.
Wilson
, “
CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis
,”
J. Phys. Chem. C
116
,
5681
5688
(
2012
).
18.
S.-G.
Wang
,
X.-Y.
Liao
,
D.-B.
Cao
,
C.-F.
Huo
,
Y.-W.
Li
,
J.
Wang
, and
H.
Jiao
, “
Factors controlling the interaction of CO2 with transition metal surfaces
,”
J. Phys. Chem. C
111
,
16934
16940
(
2007
).
19.
S.-G.
Wang
,
D.-B.
Cao
,
Y.-W.
Li
,
J.
Wang
, and
H.
Jiao
, “
Chemisorption of CO2 on nickel surfaces
,”
J. Phys. Chem. B
109
,
18956
18963
(
2005
).
20.
S. F.
Li
and
Z. X.
Guo
, “
CO2 activation and total reduction on titanium(0001) surface
,”
J. Phys. Chem. C
114
,
11456
11459
(
2010
).
21.
B.
Jiang
and
H.
Guo
, “
Communication: Enhanced dissociative chemisorption of CO2 via vibrational excitation
,”
J. Chem. Phys.
144
,
091101
(
2016
).
22.
X.
Zhang
,
J.-X.
Liu
,
B.
Zijlstra
,
I. A.
Filot
,
Z.
Zhou
,
S.
Sun
, and
E. J.
Hensen
, “
Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol
,”
Nano Energy
43
,
200
209
(
2018
).
23.
L. E.
Gálvez-González
,
J. O.
Juárez-Sánchez
,
R.
Pacheco-Contreras
,
I. L.
Garzón
,
L. O.
Paz-Borbón
, and
A.
Posada-Amarillas
, “
CO2 adsorption on gas-phase Cu4−xPtx (x = 0–4) clusters: A DFT study
,”
Phys. Chem. Chem. Phys.
20
,
17071
17080
(
2018
).
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
25.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
26.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
27.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab-initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
28.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
, “
Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions
,”
J. Comput. Phys.
228
,
8367
8379
(
2009
).
29.
L.
Zibordi-Besse
,
P.
Tereshchuk
,
A. S.
Chaves
, and
J. L. F.
Da Silva
, “
Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der Waals corrections
,”
J. Phys. Chem. A
120
,
4231
4240
(
2016
).
30.
D.
Guedes-Sobrinho
,
R. L. H.
Freire
,
A. S.
Chaves
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the role of CO adsorption on the physical properties of 55-atom PtCo nanoalloys
,”
J. Phys. Chem. C
121
,
27721
27732
(
2017
).
31.
N. A. M. S.
Caturello
,
R.
Besse
,
A. C. H.
Da Silva
,
D.
Guedes-Sobrinho
,
M. P.
Lima
, and
J. L. F.
Da Silva
, “
Ab initio investigation of atomistic insights into the nanoflake formation of transition-metal dichalcogenides: The examples of MoS2, MoSe2, and MoTe2
,”
J. Phys. Chem. C
122
,
27059
27069
(
2018
).
32.
M. J.
Piotrowski
,
P.
Piquini
, and
J. L. F.
Da Silva
, “
Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters
,”
Phys. Rev. B
81
,
155446
(
2010
).
33.
A. S.
Chaves
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): A density functional theory investigation
,”
Phys. Chem. Chem. Phys.
19
,
15484
15502
(
2017
).
34.
P.
Tereshchuk
and
J. L. F.
Da Silva
, “
Ethanol and water adsorption on close-packed 3d, 4d, and 5d transition-metal surfaces: A density functional theory investigation with van der Waals correction
,”
J. Phys. Chem. C
116
,
24695
24705
(
2012
).
35.
S.-H.
Cha
, “
Comprehensive survey on distance/similarity measures between probability density functions
,”
Int. J. Math. Models Methods Appl. Sci.
1
,
300
307
(
2007
).
36.
R.
Gehrke
and
K.
Reuter
, “
Assessing the efficiency of first-principles basin-hopping sampling
,”
Phys. Rev. B
79
,
085412
(
2009
).
37.
H. M.
Cezar
,
G. G.
Rondina
, and
J. L. F.
Da Silva
, “
Parallel tempering Monte Carlo combined with clustering Euclidean metric analysis to study the thermodynamic stability of Lennard-Jones nanoclusters
,”
J. Chem. Phys.
146
,
064114
(
2017
).
38.
M. D.
Harmony
,
V. W.
Laurie
,
R. L.
Kuczkowski
,
R. H.
Schwendeman
,
D. A.
Ramsay
,
F. J.
Lovas
,
W. J.
Lafferty
, and
A. G.
Maki
, “
Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods
,”
J. Phys. Chem. Ref. Data
8
,
619
721
(
1979
).
39.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
2007
).
40.
K. J.
Taylor
,
C. L.
Pettiette-Hall
,
O.
Cheshnovsky
, and
R. E.
Smalley
, “
Ultraviolet photoelectron spectra of coinage metal clusters
,”
J. Chem. Phys.
96
,
3319
3329
(
1992
).
41.
L.-S.
Wang
,
X.
Li
, and
H.-F.
Zhang
, “
Probing the electronic structure of iron clusters using photoelectron spectroscopy
,”
Chem. Phys.
262
,
53
(
2000
).
42.
R. G.
Copperthwaite
,
P. R.
Davies
,
M. A.
Morris
,
M. W.
Roberts
, and
R. A.
Ryder
, “
The reactive chemisorption of carbon dioxide at magnesium and copper surfaces at low temperature
,”
Catal. Lett.
1
,
11
19
(
1988
).
43.
S.
Hadenfeldt
,
C.
Benndorf
,
A.
Stricker
, and
M.
Töwe
, “
Adsorption of CO2 on K-promoted Cu(111) surfaces
,”
Surf. Sci.
352-354
,
295
299
(
1996
).
44.
S.
Funk
,
B.
Hokkanen
,
J.
Wang
,
U.
Burghaus
,
G.
Bozzolo
, and
J.
Garcés
, “
Adsorption dynamics of CO2 on Cu(110): A molecular beam study
,”
Surf. Sci.
600
,
583
590
(
2006
).
45.
R. L. H.
Freire
,
D.
Guedes-Sobrinho
,
A.
Kiejna
, and
J. L. F.
Da Silva
, “
Comparison of the performance of van der Waals dispersion functionals in the description of water and ethanol on transition metal surfaces
,”
J. Phys. Chem. C
122
,
1577
1588
(
2018
).
46.
T.
Ossowski
,
J. L. F.
Da Silva
, and
A.
Kiejna
, “
Water adsorption on the stoichiometric and defected Fe(110) surfaces
,”
Surf. Sci.
668
,
144
149
(
2018
).
47.
W.
Xie
,
L.
Peng
,
D.
Peng
,
F. L.
Gu
, and
J.
Liu
, “
Processes of H2 adsorption on Fe(110) surface: A density functional theory study
,”
Appl. Surf. Sci.
296
,
47
52
(
2014
).
48.
K. E. A.
Batista
,
J. L. F.
Da Silva
, and
M. J.
Piotrowski
, “
Adsorption of CO, NO, and H2 on the PdnAu55−n nanoclusters: A density functional theory investigation within the van der Waals D3 corrections
,”
J. Phys. Chem. C
123
,
7431
7439
(
2019
).
49.
C.
Liu
,
T. R.
Cundari
, and
A. K.
Wilson
, “
Periodic trends in 3d metal mediated CO2 activation
,” in
Applications of Molecular Modeling to Challenges in Clean Energy
, ACS Symposium Series (
American Chemical Society
,
2013
), pp.
67
88
.
50.
Y.-G.
Wang
,
K. B.
Wiberg
, and
N. H.
Werstiuk
, “
Correlation effects in EOM-CCSD for the excited states: Evaluated by AIM localization index (LI) and delocalization index (DI)
,”
J. Phys. Chem. A
111
,
3592
3601
(
2007
).
51.
T.
Shimanouchi
and
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies
(
National Bureau of Standards
,
Washington, DC
,
1980
).
52.
H.
Behner
,
W.
Spiess
,
G.
Wedler
, and
D.
Borgmann
, “
Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111)
,”
Surf. Sci.
175
,
276
286
(
1986
).
53.
H.-J.
Freund
,
H.
Behner
,
B.
Bartos
,
G.
Wedler
,
H.
Kuhlenbeck
, and
M.
Neumann
, “
CO2 adsorption and reaction on Fe(111): An angle resolved photoemission (ARUPS) study
,”
Surf. Sci.
180
,
550
564
(
1987
).
54.
G.
Heß
,
C.
Baumgartner
, and
H.
Froitzheim
, “
Adsorption sites and microstructures of CO2 on Fe(111) derived from specular and off-specular HREELS
,”
Phys. Rev. B
63
,
165416-1
165416-7
(
2001
).
55.
G.
Heß
,
C.
Baumgartner
,
A.
Petkova
, and
H.
Froitzheim
, “
The determination of binding energies and preexponential factors: A time resolved HREELS study on Fe(111)/CO2
,”
Surf. Sci.
572
,
355
365
(
2004
).
56.
B.
Bartos
,
H.-J.
Freund
,
H.
Kuhlenbeck
,
M.
Neumann
,
H.
Lindner
, and
K.
Müller
, “
Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): Angle resolved photoemission (ARUPS) and electron energy loss (HREELS) studies
,”
Surf. Sci.
179
,
59
89
(
1987
).

Supplementary Material

You do not currently have access to this content.