The computationally expensive evaluation and storage of high-rank reduced density matrices (RDMs) has been the bottleneck in the calculation of dynamic correlation for multireference wave functions in large active spaces. We present a stochastic formulation of multireference configuration interaction and perturbation theory that avoids the need for these expensive RDMs. The algorithm presented here is flexible enough to incorporate a wide variety of active space reference wave functions, including selected configuration interaction, matrix product states, and symmetry-projected Jastrow mean field wave functions. It enjoys the usual attractive features of Monte Carlo methods, such as embarrassing parallelizability and low memory costs. We find that the stochastic algorithm is already competitive with the deterministic algorithm for small active spaces, containing as few as 14 orbitals. We illustrate the utility of our stochastic formulation using benchmark applications.

1.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
4130
(
1999
).
2.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
3.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
, “
Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling
,”
J. Chem. Theory Comput.
12
,
3674
3680
(
2016
).
4.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
1604
(
2017
).
5.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
6.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
7.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
, “
Semistochastic projector Monte Carlo method
,”
Phys. Rev. Lett.
109
,
230201
(
2012
).
8.
B. O.
Roos
,
P. R.
Taylor
,
P. E.
Si
et al, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
9.
B. O.
Roos
, “
The complete active space SCF method in a Fock-matrix-based super-CI formulation
,”
Int. J. Quantum Chem.
18
,
175
189
(
1980
).
10.
P. E.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
, “
The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule
,”
J. Chem. Phys.
74
,
2384
2396
(
1981
).
11.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene
,”
J. Chem. Phys.
128
,
144117
(
2008
).
12.
D.
Zgid
and
M.
Nooijen
, “
The density matrix renormalization group self-consistent field method: Orbital optimization with the density matrix renormalization group method in the active space
,”
J. Chem. Phys.
128
,
144116
(
2008
).
13.
T.
Yanai
,
Y.
Kurashige
,
D.
Ghosh
, and
G. K.-L.
Chan
, “
Accelerating convergence in iterative solution for large-scale complete active space self-consistent-field calculations
,”
Int. J. Quantum Chem.
109
,
2178
2190
(
2009
).
14.
J. E.
Smith
,
B.
Mussard
,
A. A.
Holmes
, and
S.
Sharma
, “
Cheap and near exact CASSCF with large active spaces
,”
J. Chem. Theory Comput.
13
,
5468
5478
(
2017
).
15.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
, “
Stochastic multiconfigurational self-consistent field theory
,”
J. Chem. Theory Comput.
11
,
5316
(
2015
).
16.
G.
Li Manni
,
S. D.
Smart
, and
A.
Alavi
, “
Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins
,”
J. Chem. Theory Comput.
12
,
1245
1258
(
2016
).
17.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
, “
The radical character of the acenes: A density matrix renormalization group study
,”
J. Chem. Phys.
127
,
134309
(
2007
).
18.
K. H.
Marti
,
I. M.
Ondík
,
G.
Moritz
, and
M.
Reiher
, “
Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters
,”
J. Chem. Phys.
128
,
014104
(
2008
).
19.
Y.
Kurashige
and
T.
Yanai
, “
High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds
,”
J. Chem. Phys.
130
,
234114
(
2009
).
20.
Y.
Kurashige
,
G. K.-L.
Chan
, and
T.
Yanai
, “
Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II
,”
Nat. Chem.
5
,
660
(
2013
).
21.
S.
Sharma
,
K.
Sivalingam
,
F.
Neese
, and
G. K.-L.
Chan
, “
Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics
,”
Nat. Chem.
6
,
927
(
2014
).
22.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
, “
The ab-initio density matrix renormalization group in practice
,”
J. Chem. Phys.
142
,
034102
(
2015
).
23.
B.
Mussard
and
S.
Sharma
, “
One-step treatment of spin–orbit coupling and electron correlation in large active spaces
,”
J. Chem. Theory Comput.
14
,
154
165
(
2017
).
24.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
, “
Fast semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
149
,
214110
(
2018
).
25.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wavefunctions in real solids
,”
Nature
493
,
365
(
2013
).
26.
G.
Li Manni
and
A.
Alavi
, “
Understanding the mechanism stabilizing intermediate spin states in Fe(II)-porphyrin
,”
J. Phys. Chem. A
122
,
4935
4947
(
2018
).
27.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
28.
K.
Andersson
,
P.-Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
29.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
, “
Introduction of n-electron valence states for multireference perturbation theory
,”
J. Chem. Phys.
114
,
10252
10264
(
2001
).
30.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
, “
n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants
,”
J. Chem. Phys.
117
,
9138
9153
(
2002
).
31.
C.
Angeli
,
S.
Borini
,
M.
Cestari
, and
R.
Cimiraglia
, “
A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach
,”
J. Chem. Phys.
121
,
4043
4049
(
2004
).
32.
H.-J.
Werner
and
P. J.
Knowles
, “
An efficient internally contracted multiconfiguration–reference configuration interaction method
,”
J. Chem. Phys.
89
,
5803
5814
(
1988
).
33.
P. J.
Knowles
and
H.-J.
Werner
, “
An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
,”
Chem. Phys. Lett.
145
,
514
522
(
1988
).
34.
P. J.
Knowles
and
H.-J.
Werner
, “
Internally contracted multiconfiguration-reference configuration interaction calculations for excited states
,”
Theor. Chim. Acta
84
,
95
103
(
1992
).
35.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
36.
T.
Yanai
and
G. K.-L.
Chan
, “
Canonical transformation theory for multireference problems
,”
J. Chem. Phys.
124
,
194106
(
2006
).
37.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
, “
A review of canonical transformation theory
,”
Int. Rev. Phys. Chem.
29
,
231
271
(
2010
).
38.
F. A.
Evangelista
, “
A driven similarity renormalization group approach to quantum many-body problems
,”
J. Chem. Phys.
141
,
054109
(
2014
).
39.
Y.
Kurashige
and
T.
Yanai
, “
Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer
,”
J. Chem. Phys.
135
,
094104
(
2011
).
40.
S.
Guo
,
M. A.
Watson
,
W.
Hu
,
Q.
Sun
, and
G. K.-L.
Chan
, “
N-electron valence state perturbation theory based on a density matrix renormalization group reference function, with applications to the chromium dimer and a trimer model of poly (p-phenylenevinylene)
,”
J. Chem. Theory Comput.
12
,
1583
1591
(
2016
).
41.
M.
Roemelt
,
S.
Guo
, and
G. K.-L.
Chan
, “
A projected approximation to strongly contracted N-electron valence perturbation theory for DMRG wavefunctions
,”
J. Chem. Phys.
144
,
204113
(
2016
).
42.
D.
Zgid
,
D.
Ghosh
,
E.
Neuscamman
, and
G. K.-L.
Chan
, “
A study of cumulant approximations to n-electron valence multireference perturbation theory
,”
J. Chem. Phys.
130
,
194107
(
2009
).
43.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function
,”
J. Chem. Phys.
139
,
044118
(
2013
).
44.
Y.
Kurashige
,
J.
Chalupskỳ
,
T. N.
Lan
, and
T.
Yanai
, “
Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group
,”
J. Chem. Phys.
141
,
174111
(
2014
).
45.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Fully internally contracted multireference configuration interaction theory using density matrix renormalization group: A reduced-scaling implementation derived by computer-aided tensor factorization
,”
J. Chem. Theory Comput.
11
,
5120
5131
(
2015
).
46.
S.
Shirai
,
Y.
Kurashige
, and
T.
Yanai
, “
Computational evidence of inversion of 1La and 1Lb-derived excited states in naphthalene excimer formation from ab initio multireference theory with large active space: DMRG-CASPT2 study
,”
J. Chem. Theory Comput.
12
,
2366
2372
(
2016
).
47.
Q. M.
Phung
,
S.
Wouters
, and
K.
Pierloot
, “
Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: A benchmark study
,”
J. Chem. Theory Comput.
12
,
4352
4361
(
2016
).
48.
T.
Yanai
,
M.
Saitow
,
X.-G.
Xiong
,
J.
Chalupský
,
Y.
Kurashige
,
S.
Guo
, and
S.
Sharma
, “
Multistate complete-active-space second-order perturbation theory based on density matrix renormalization group reference states
,”
J. Chem. Theory Comput.
13
,
4829
4840
(
2017
).
49.
N.
Nakatani
and
S.
Guo
, “
Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations
,”
J. Chem. Phys.
146
,
094102
(
2017
).
50.
S.
Wouters
,
V.
Van Speybroeck
, and
D.
Van Neck
, “
DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes
,”
J. Chem. Phys.
145
,
054120
(
2016
).
51.
P.
Celani
and
H.-J.
Werner
, “
Multireference perturbation theory for large restricted and selected active space reference wave functions
,”
J. Chem. Phys.
112
,
5546
5557
(
2000
).
52.
K.
Shamasundar
,
G.
Knizia
, and
H.-J.
Werner
, “
A new internally contracted multi-reference configuration interaction method
,”
J. Chem. Phys.
135
,
054101
(
2011
).
53.
S.
Sharma
and
G. K.-L.
Chan
, “
Communication: A flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states
,”
J. Chem. Phys.
141
,
111101
(
2014
).
54.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
, “
Combining internally contracted states and matrix product states to perform multireference perturbation theory
,”
J. Chem. Theory Comput.
13
,
488
498
(
2017
).
55.
A. Y.
Sokolov
,
S.
Guo
,
E.
Ronca
, and
G. K.-L.
Chan
, “
Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes
,”
J. Chem. Phys.
146
,
244102
(
2017
).
56.
S.
Sharma
and
A.
Alavi
, “
Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states
,”
J. Chem. Phys.
143
,
102815
(
2015
).
57.
S.
Sharma
,
G.
Jeanmairet
, and
A.
Alavi
, “
Quasi-degenerate perturbation theory using matrix product states
,”
J. Chem. Phys.
144
,
034103
(
2016
).
58.
D.
Tahara
and
M.
Imada
, “
Variational Monte Carlo method combined with quantum-number projection and multi-variable optimization
,”
J. Phys. Soc. Jpn.
77
,
114701
(
2008
).
59.
E.
Neuscamman
, “
Size consistency error in the antisymmetric geminal power wave function can be completely removed
,”
Phys. Rev. Lett.
109
,
203001
(
2012
).
60.
E.
Neuscamman
, “
The Jastrow antisymmetric geminal power in Hilbert space: Theory, benchmarking, and application to a novel transition state
,”
J. Chem. Phys.
139
,
194105
(
2013
).
61.
A.
Mahajan
and
S.
Sharma
, “
Symmetry-projected Jastrow mean-field wave function in variational Monte Carlo
,”
J. Phys. Chem. A
123
,
3911
3921
(
2019
).
62.
A.
McLean
and
B.
Liu
, “
Classification of configurations and the determination of interacting and noninteracting spaces in configuration interaction
,”
J. Chem. Phys.
58
,
1066
1078
(
1973
).
63.
W.
Meyer
,
Modern Theoretical Chemistry
(
Plenum Press
,
New York
,
1977
).
64.
P. E.
Siegbahn
, “
Direct configuration interaction with a reference state composed of many reference configurations
,”
Int. J. Quantum Chem.
18
,
1229
1242
(
1980
).
65.
K.
Sivalingam
,
M.
Krupicka
,
A. A.
Auer
, and
F.
Neese
, “
Comparison of fully internally and strongly contracted multireference configuration interaction procedures
,”
J. Chem. Phys.
145
,
054104
(
2016
).
66.
Z.
Luo
,
Y.
Ma
,
X.
Wang
, and
H.
Ma
, “
Externally-contracted multireference configuration interaction method using a DMRG reference wave function
,”
J. Chem. Theory Comput.
14
,
4747
4755
(
2018
).
67.
A.
Bortz
,
M.
Kalos
, and
J.
Lebowitz
, “
A new algorithm for Monte Carlo simulation of Ising spin systems
,”
J. Comput. Phys.
17
,
10
18
(
1975
).
68.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
69.
I.
Sabzevari
and
S.
Sharma
, “
Improved speed and scaling in orbital space variational Monte Carlo
,”
J. Chem. Theory Comput.
14
,
6276
6286
(
2018
).
70.
M.
Nightingale
and
V.
Melik-Alaverdian
, “
Optimization of ground-and excited-state wave functions and van der Waals clusters
,”
Phys. Rev. Lett.
87
,
043401
(
2001
).
71.
C.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
, “
Alleviation of the Fermion-sign problem by optimization of many-body wave functions
,”
Phys. Rev. Lett.
98
,
110201
(
2007
).
72.
J.
Toulouse
and
C. J.
Umrigar
, “
Optimization of quantum Monte Carlo wave functions by energy minimization
,”
J. Chem. Phys.
126
,
084102
(
2007
).
73.
J.
Toulouse
and
C.
Umrigar
, “
Full optimization of Jastrow–Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules
,”
J. Chem. Phys.
128
,
174101
(
2008
).
74.
L.
Zhao
and
E.
Neuscamman
, “
A blocked linear method for optimizing large parameter sets in variational Monte Carlo
,”
J. Chem. Theory Comput.
13
,
2604
2611
(
2017
).
75.
I.
Sabzevari
,
A.
Mahajan
, and
S.
Sharma
, “
An accelerated linear method for optimizing non-linear wavefunctions in variational Monte Carlo
,” preprint arXiv:1908.04423 (
2019
).
76.
S. J.
Reddi
,
S.
Kale
, and
S.
Kumar
, “
On the convergence of Adam and beyond
,” e-print arXiv:1904.09237.
77.
L. R.
Schwarz
,
A.
Alavi
, and
G. H.
Booth
, “
Projector quantum Monte Carlo method for nonlinear wave functions
,”
Phys. Rev. Lett.
118
,
176403
(
2017
).
78.
L.
Otis
and
E.
Neuscamman
, “
Complementary first and second derivative methods for ansatz optimization in variational Monte Carlo
,”
Phys. Chem. Chem. Phys.
21
,
14491
(
2019
).
79.
K. G.
Dyall
, “
The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function
,”
J. Chem. Phys.
102
,
4909
4918
(
1995
).
80.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
81.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
K.-L. G.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
82.
L.
Zhao
and
E.
Neuscamman
, “
Equation of motion theory for excited states in variational Monte Carlo and the Jastrow antisymmetric geminal power in Hilbert space
,”
J. Chem. Theory Comput.
12
,
3719
3726
(
2016
).
83.
N. S.
Blunt
,
A.
Alavi
, and
G. H.
Booth
, “
Nonlinear biases, stochastically sampled effective Hamiltonians, and spectral functions in quantum Monte Carlo methods
,”
Phys. Rev. B
98
,
085118
(
2018
).
84.
C.
Angeli
,
R.
Cimiraglia
, and
M.
Pastore
, “
A comparison of various approaches in internally contracted multireference configuration interaction: The carbon dimer as a test case
,”
Mol. Phys.
110
,
2963
2968
(
2012
).
You do not currently have access to this content.