Iridium-based materials are among the most active bifunctional catalysts in heterogeneous catalysis and electrocatalysis. We have investigated the properties of atomically defined Ir/CeO2(111) model systems supported on Cu(111) and Ru(0001) by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, near ambient pressure X-ray photoelectron spectroscopy (NAP XPS), scanning tunneling microscopy, and temperature programmed desorption. Electronic metal-support interactions in the Ir/CeO2(111) system are accompanied by charge transfer and partial reduction of CeO2(111). The magnitude of the charge transfer depends strongly on the Ir coverage. The Ir/CeO2(111) system is stable against sintering upon annealing to 600 K in ultrahigh vacuum (UHV). Annealing of Ir/CeO2(111) in UHV triggers the reverse oxygen spillover above 450 K. The interaction of hydrogen with Ir/CeO2(111) involves hydrogen spillover and reversible spillover between 100 and 400 K accompanied by the formation of water above 190 K. Formation of water coupled with the strong reduction of CeO2(111) represents the dominant reaction channel upon annealing in H2 above 450 K. The interaction of Ir/CeO2(111) with oxygen has been investigated at moderate and NAP conditions. Additionally, the formation and stability of iridium oxide prepared by deposition of Ir in oxygen atmosphere was investigated upon annealing in UHV and under exposure to H2. The oxidation of Ir nanoparticles under NAP conditions yields stable IrOx nanoparticles. The stability of Ir and IrOx nanoparticles under oxidizing conditions is hampered, however, by encapsulation by cerium oxide above 450 K and additionally by copper and ruthenium oxides under NAP conditions.

1.
N.
Kittner
,
F.
Lill
, and
D. M.
Kammen
,
Nat. Energy
2
,
17125
(
2017
).
2.
D.
Bogdanov
,
J.
Farfan
,
K.
Sadovskaia
,
A.
Aghahosseini
,
M.
Child
,
A.
Gulagi
,
A. S.
Oyewo
,
L.
de Souza Noel Simas Barbosa
, and
C.
Breyer
,
Nat. Commun.
10
,
1077
(
2019
).
3.
S.
Chu
and
A.
Majumdar
,
Nature
488
,
294
(
2012
).
4.
A. S.
Aricò
,
V.
Baglio
,
N.
Briguglio
,
G.
Maggio
, and
S.
Siracusano
, “
Proton exchange membrane water electrolysis
,” in
Fuel Cells: Data, Facts and Figures
, edited by
P. D.
Stolten
,
D. R. C.
Samsun
, and
D. N.
Garland
(
Wiley
,
2016
), p.
343
.
5.
S.
Park
,
Y.
Shao
,
J.
Liu
, and
Y.
Wang
,
Energy Environ. Sci.
5
,
9331
(
2012
).
6.
C.
Wang
,
F.
Lan
,
Z.
He
,
X.
Xie
,
Y.
Zhao
,
H.
Hou
,
L.
Guo
,
V.
Murugadoss
,
H.
Liu
,
Q.
Shao
,
Q.
Gao
,
T.
Ding
,
R.
Wei
, and
Z.
Guo
,
ChemSusChem
12
,
1576
(
2019
).
7.
Q.
Shi
,
C.
Zhu
,
D.
Du
, and
Y.
Lin
,
Chem. Soc. Rev.
48
,
3181
(
2019
).
8.
Y.
Chen
,
H.
Li
,
J.
Wang
,
Y.
Du
,
S.
Xi
,
Y.
Sun
,
M.
Sherburne
,
J. W.
Ager
,
A. C.
Fisher
, and
Z. J.
Xu
,
Nat. Commun.
10
,
572
(
2019
).
9.
F.
Lu
,
M.
Zhou
,
Y.
Zhou
, and
X.
Zeng
,
Small
13
,
1701931
(
2017
).
10.
N.-T.
Suen
,
S.-F.
Hung
,
Q.
Quan
,
N.
Zhang
,
Y.-J.
Xu
, and
H. M.
Chen
,
Chem. Soc. Rev.
46
,
337
(
2017
).
11.
E.
Antolini
,
ACS Catal.
4
,
1426
(
2014
).
12.
P.
Kúš
,
A.
Ostroverkh
,
K.
Ševčíková
,
I.
Khalakhan
,
R.
Fiala
,
T.
Skála
,
N.
Tsud
, and
V.
Matolin
,
Int. J. Hydrogen Energy
41
,
15124
(
2016
).
13.
P.
Kúš
,
A.
Ostroverkh
,
I.
Khalakhan
,
R.
Fiala
,
Y.
Kosto
,
B.
Šmíd
,
Y.
Lobko
,
Y.
Yakovlev
,
J.
Nováková
,
I.
Matolínová
, and
V.
Matolín
,
Int. J. Hydrogen Energy
44
,
16087
(
2019
).
14.
T.
Ioroi
,
N.
Kitazawa
,
K.
Yasuda
,
Y.
Yamamoto
, and
H.
Takenaka
,
J. Electrochem. Soc.
147
,
2018
(
2000
).
15.
D. F.
Abbott
,
D.
Lebedev
,
K.
Waltar
,
M.
Povia
,
M.
Nachtegaal
,
E.
Fabbri
,
C.
Copéret
, and
T. J.
Schmidt
,
Chem. Mater.
28
,
6591
(
2016
).
16.
W. H.
Lee
and
H.
Kim
,
Catal. Commun.
12
,
408
(
2011
).
17.
M.
Cargnello
,
V. V. T.
Doan-Nguyen
,
T. R.
Gordon
,
R. E.
Diaz
,
E. A.
Stach
,
R. J.
Gorte
,
P.
Fornasiero
, and
C. B.
Murray
,
Science
341
,
771
(
2013
).
18.
A.
Bruix
,
Y.
Lykhach
,
I.
Matolínová
,
A.
Neitzel
,
T.
Skála
,
N.
Tsud
,
M.
Vorokhta
,
V.
Stetsovych
,
K.
Ševčiková
,
J.
Mysliveček
,
R.
Fiala
,
M.
Václavů
,
K. C.
Prince
,
S.
Bruyere
,
V.
Potin
,
F.
Illas
,
V.
Matolín
,
J.
Libuda
, and
K. M.
Neyman
,
Angew. Chem., Int. Ed.
53
,
10525
(
2014
).
19.
G. N.
Vayssilov
,
Y.
Lykhach
,
A.
Migani
,
T.
Staudt
,
G. P.
Petrova
,
N.
Tsud
,
T.
Skála
,
A.
Bruix
,
F.
Illas
,
K. C.
Prince
,
V.
Matolín
,
K. M.
Neyman
, and
J.
Libuda
,
Nat. Mater.
10
,
310
(
2011
).
20.
Y.
Lykhach
,
V.
Johánek
,
H.
Aleksandrov
,
S. M.
Kozlov
,
M.
Happel
,
T.
Skála
,
P. S.
Petkov
,
N.
Tsud
,
G. N.
Vayssilov
,
K. C.
Prince
,
K. M.
Neyman
,
V.
Matolín
, and
J.
Libuda
,
J. Phys. Chem. C
116
,
12103
(
2012
).
21.
C. R.
Henry
,
Surf. Sci. Rep.
31
,
235
(
1998
).
22.
H. J.
Freund
,
Chem. - Eur. J.
16
,
9384
(
2010
).
23.
Y.
Lykhach
,
S. M.
Kozlov
,
T.
Skála
,
A.
Tovt
,
V.
Stetsovych
,
N.
Tsud
,
F.
Dvořák
,
V.
Johánek
,
A.
Neitzel
,
J.
Mysliveček
,
S.
Fabris
,
V.
Matolín
,
K. M.
Neyman
, and
J.
Libuda
,
Nat. Mater.
15
,
284
(
2016
).
24.
Y.
Lykhach
,
T.
Staudt
,
M.
Vorokhta
,
T.
Skála
,
V.
Johánek
,
K. C.
Prince
,
V.
Matolín
, and
J.
Libuda
,
J. Catal.
285
,
6
(
2012
).
25.
F.
Faisal
,
C.
Stumm
,
M.
Bertram
,
F.
Waidhas
,
Y.
Lykhach
,
S.
Cherevko
,
F.
Xiang
,
M.
Ammon
,
M.
Vorokhta
,
B.
Šmíd
,
T.
Skála
,
N.
Tsud
,
A.
Neitzel
,
K.
Beranová
,
K. C.
Prince
,
S.
Geiger
,
O.
Kasian
,
T.
Wähler
,
R.
Schuster
,
M. A.
Schneider
,
V.
Matolín
,
K. J. J.
Mayrhofer
,
O.
Brummel
, and
J.
Libuda
,
Nat. Mater.
17
,
592
(
2018
).
26.
F.
Faisal
,
M.
Bertram
,
C.
Stumm
,
T.
Wähler
,
R.
Schuster
,
Y.
Lykhach
,
A.
Neitzel
,
T.
Skála
,
N.
Tsud
,
K.
Beranová
,
K. C.
Prince
,
V.
Matolín
,
O.
Brummel
, and
J.
Libuda
,
J. Phys. Chem. C
122
,
20787
(
2018
).
27.
O.
Brummel
,
Y.
Lykhach
,
M.
Vorokhta
,
B.
Šmíd
,
C.
Stumm
,
F.
Faisal
,
T.
Skála
,
N.
Tsud
,
A.
Neitzel
,
K.
Beranová
,
K. C.
Prince
,
V.
Matolín
, and
J.
Libuda
,
J. Phys. Chem. C
123
,
8746
(
2019
).
28.
K.
Hayek
,
H.
Goller
,
S.
Penner
,
G.
Rupprechter
, and
C.
Zimmermann
,
Catal. Lett.
92
,
1
(
2004
).
29.
F.
Šutara
,
M.
Cabala
,
L.
Sedláček
,
T.
Skála
,
M.
Škoda
,
V.
Matolín
,
K. C.
Prince
, and
V.
Cháb
,
Thin Solid Films
516
,
6120
(
2008
).
30.
G.
Vari
,
L.
Ovari
,
J.
Kiss
, and
Z.
Konya
,
Phys. Chem. Chem. Phys.
17
,
5124
(
2015
).
31.
V.
Matolín
,
I.
Matolínová
,
L.
Sedláček
,
K. C.
Prince
, and
T.
Skála
,
Nanotechnology
20
,
215706
(
2009
).
32.
J.
Libra
, KolXPD: Spectroscopy Data Measurement and Processing, 2011, http://www.kolibrik.net/science/kolxpd/; accessed 15 June 2019.
33.
V.
Pfeifer
,
T. E.
Jones
,
J. J.
Velasco Vélez
,
C.
Massué
,
R.
Arrigo
,
D.
Teschner
,
F.
Girgsdies
,
M.
Scherzer
,
M. T.
Greiner
,
J.
Allan
,
M.
Hashagen
,
G.
Weinberg
,
S.
Piccinin
,
M.
Hävecker
,
A.
Knop-Gericke
, and
R.
Schlögl
,
Surf. Interface Anal.
48
,
261
(
2016
).
34.
J.
Radnik
,
C.
Mohr
, and
P.
Claus
,
Phys. Chem. Chem. Phys.
5
,
172
(
2003
).
35.
M. G.
Mason
,
Phys. Rev. B
27
,
748
(
1983
).
36.
G. K.
Wertheim
and
S. B.
DiCenzo
,
Phys. Rev. B
37
,
844
(
1988
).
37.
Y.
Lykhach
,
F.
Faisal
,
T.
Skála
,
A.
Neitzel
,
N.
Tsud
,
M.
Vorokhta
,
F.
Dvořák
,
K.
Beranová
,
Y.
Kosto
,
K. C.
Prince
,
V.
Matolín
, and
J.
Libuda
,
J. Mater. Chem. A
6
,
23078
(
2018
).
38.
G.
Pacchioni
,
Phys. Chem. Chem. Phys.
15
,
1737
(
2013
).
39.
Z.
Jiang
,
W.
Zhang
,
L.
Jin
,
X.
Yang
,
F.
Xu
,
J.
Zhu
, and
W.
Huang
,
J. Phys. Chem. C
111
,
12434
(
2007
).
40.
M.
Happel
,
J.
Mysliveček
,
V.
Johánek
,
F.
Dvořák
,
O.
Stetsovych
,
Y.
Lykhach
,
V.
Matolín
, and
J.
Libuda
,
J. Catal.
289
,
118
(
2012
).
41.
M.
Bianchi
,
D.
Cassese
,
A.
Cavallin
,
R.
Comin
,
F.
Orlando
,
L.
Postregna
,
E.
Golfetto
,
S.
Lizzit
, and
A.
Baraldi
,
New J. Phys.
11
,
063002
(
2009
).
42.
P.
Lacovig
,
M.
Pozzo
,
D.
Alfè
,
P.
Vilmercati
,
A.
Baraldi
, and
S.
Lizzit
,
Phys. Rev. Lett.
103
,
166101
(
2009
).
43.
M. C.
Biesinger
,
Surf. Interface Anal.
49
,
1325
(
2017
).
44.
T.
Duchoň
,
F.
Dvořák
,
M.
Aulická
,
V.
Stetsovych
,
M.
Vorokhta
,
D.
Mazur
,
K.
Veltruská
,
T.
Skála
,
J.
Mysliveček
,
I.
Matolínová
, and
V.
Matolín
,
J. Phys. Chem. C
118
,
5058
(
2014
).
45.
D. J.
Morgan
,
Surf. Interface Anal.
47
,
1072
(
2015
).
46.
T. S.
Marinova
and
K. L.
Kostov
,
Surf. Sci.
185
,
203
(
1987
).
47.
Y. B.
He
,
A.
Stierle
,
W. X.
Li
,
A.
Farkas
,
N.
Kasper
, and
H.
Over
,
J. Phys. Chem. C
112
,
11946
(
2008
).
You do not currently have access to this content.