This work demonstrates by in vacuo X-ray photoelectron spectroscopy and grazing-incidence X-ray diffraction that Ru(EtCp)2 and O* radical-enhanced atomic layer deposition, where EtCp means the ethylcyclopentadienyl group, provides the growth of either RuO2 or Ru thin films depending on the deposition temperature (Tdep), while different mechanisms are responsible for the growth of RuO2 and Ru. The thin films deposited at temperatures ranging from 200 to 260 °C consisted of polycrystalline rutile RuO2 phase revealing, according to atomic force microscopy and the four-point probe method, a low roughness (∼1.7 nm at 15 nm film thickness) and a resistivity of ≈83 µΩ cm. This low-temperature RuO2 growth was based on Ru(EtCp)2 adsorption, subsequent ligand removal, and Ru oxidation by active oxygen. The clear saturative behavior with regard to the precursor and reactant doses and each purge time, as well as the good step coverage of the film growth onto 3D structures, inherent to genuine surface-controlled atomic layer deposition, were confirmed for the lowest Tdep of 200 °C. However, at Tdep = 260 °C, a competition between film growth and etching was found, resulted in not-saturative growth. At higher deposition temperatures (300–340 °C), the growth of metallic Ru thin films with a resistivity down to ≈12 µΩ cm was demonstrated, where the film growth was proved to follow a combustion mechanism known for molecular oxygen-based Ru growth processes. However, this process lacked the truly saturative growth with regard to the precursor and reactant doses due to the etching predominance.

1.
J.
Hämäläinen
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of noble metals and their oxides
,”
Chem. Mater.
26
(
1
),
786
801
(
2014
).
2.
S. K.
Kim
,
J. H.
Han
,
G. H.
Kim
, and
C. S.
Hwang
, “
Investigation on the growth initiation of Ru thin films by atomic layer deposition
,”
Chem. Mater.
22
(
9
),
2850
2856
(
2010
).
3.
H.
Wang
,
R. G.
Gordon
,
R.
Alvis
, and
R. M.
Ulfig
, “
Atomic layer deposition of ruthenium thin films from an amidinate precursor
,”
Chem. Vap. Deposition
15
,
312
319
(
2009
).
4.
S.-H.
Kwon
,
O.-K.
Kwon
,
J.-H.
Kim
,
H.-R.
Oh
,
K.-H.
Kim
, and
S.-W.
Kang
, “
Initial stages of ruthenium film growth in plasma-enhanced atomic layer deposition
,”
J. Electrochem. Soc.
155
(
5
),
H296
H300
(
2008
).
5.
N.
Leick
,
R. O. F.
Verkuijlen
,
L.
Lamagna
,
E.
Langereis
,
S.
Rushworth
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
, “
Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma
,”
J. Vac. Sci. Technol., A
29
(
2
),
021016
(
2011
).
6.
C. S.
Hwang
,
S. K.
Kim
, and
S. W.
Lee
, “
Mass-production memories (DRAM and flash)
,” in
Atomic Layer Deposition for Semiconductors
, edited by
C. S.
Hwang
and
C. Y.
Yoo
(
Springer
,
2014
), pp.
73
122
, ISBN: 978-1-4614-8054-9.
7.
K.
Frohlich
,
B.
Hudec
,
M.
Tapajna
,
K.
Husekova
,
A.
Rosova
,
P.
Elias
,
J.
Aarik
,
R.
Rammula
,
A.
Kasikov
,
T.
Arroval
,
L.
Aarik
,
K.
Murakami
,
M.
Rommel
, and
A. J.
Bauer
, “
TiO2-based metal-insulator metal structures for future DRAM storage capacitors
,”
ECS Trans.
50
(
13
),
79
87
(
2013
).
8.
D. P.
Vijay
and
S. B.
Desu
, “
Electrodes for PbZrxTi1−x O3 ferroelectric thin films
,”
J. Electrochem. Soc.
140
,
2640
2645
(
1993
).
9.
L.
Meng
and
M. P.
dos Santos
, “
Characterization of RuO2 films prepared by RF reactive magnetron sputtering
,”
Appl. Surf. Sci.
147
,
94
100
(
1999
).
10.
E.
Kolawa
,
F. C. T.
So
,
W.
Flick
,
X.-A.
Zhao
,
E. T.-S.
Pan
, and
M.-A.
Nicolet
, “
Reactive sputtering of RuO2 films
,”
Thin Solid Films
173
,
217
224
(
1989
).
11.
J. G.
Lee
,
Y. T.
Kim
,
S.-k.
Min
, and
S. H.
Choh
, “
Effects of excess oxygen on the properties of reactively sputtered RuOx thin films
,”
J. Appl. Phys.
77
,
5473
(
1995
);
V.
Mikkulainen
,
M.
Leskela
,
M.
Ritala
, and
R. L.
Puurunen
, “
Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
,”
J. Appl. Phys.
113
,
021301
(
2013
).
12.
S. K.
Kim
and
M.
Popovici
, “
Future of dynamic random-access memory as main memory
,”
MRS Bull.
43
(
5
),
334
339
(
2018
).
13.
T.
Aaltonen
,
A.
Rahtu
,
M.
Ritala
, and
M.
Leskelä
, “
Reaction mechanism studies on atomic layer deposition of ruthenium and platinum
,”
Electrochem. Solid-State Lett.
6
(
9
),
C130
C133
(
2003
).
14.
T.
Aaltonen
,
P.
Alén
,
M.
Ritala
, and
M.
Leskelä
, “
Ruthenium thin films grown by atomic layer deposition
,”
Chem. Vap. Deposition
9
(
1
),
45
49
(
2003
).
15.
J.-Y.
Kim
,
D.-S.
Kil
,
J.-H.
Kim
,
S.-H.
Kwon
,
J.-H.
Ahn
,
J.-S.
Roh
, and
S.-K.
Park
, “
Ru films from bis(ethylcyclopentadienyl)ruthenium using ozone as a reactant by atomic layer deposition for capacitor electrodes
,”
J. Electrochem. Soc.
159
(
6
),
H560
H564
(
2012
).
16.
K. V.
Egorov
,
Y. Y.
Lebedinskii
,
A. A.
Soloviev
,
A. A.
Chouprik
,
A. Y.
Azarov
, and
A. M.
Markeev
, “
Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy
,”
Appl. Surf. Sci.
419
,
107
113
(
2017
).
17.
T.
Shibutami
,
N.
Oshima
, and
H.
Funakubo
, “
A novel ruthenium precursor for MOCVD without seed ruthenium layer
,”
TOSOH Res. Technol. Rev.
47
,
61
64
(
2003
).
18.
O.-K.
Kwon
,
J.-H.
Kim
,
H.-S.
Park
, and
S.-W.
Kang
, “
Atomic layer deposition of ruthenium thin films for copper glue layer
,”
J. Electrochem. Soc.
151
(
2
),
G109
G112
(
2004
).
19.
S.-H.
Kwon
,
O.-K.
Kwon
,
J.-H.
Kim
,
S.-J.
Jeong
,
S.-W.
Kim
, and
S.-W.
Kang
, “
Improvement of the morphological stability by stacking RuO2 on Ru thin films with atomic layer deposition
,”
J. Electrochem. Soc.
154
(
9
),
H773
H777
(
2007
).
20.
J.-H.
Kim
,
D.-S.
Kil
,
S.-J.
Yeom
,
J.-S.
Roh
,
N.-J.
Kwak
, and
J.-W.
Kim
, “
Modified atomic layer deposition of RuO2 thin films for capacitor electrodes
,”
Appl. Phys. Lett.
91
,
052908
(
2007
).
21.
M. M.
Minjauw
,
H.
Rijckaert
,
I. V.
Driessche
,
C.
Detavernier
, and
J.
Dendooven
, “
Nucleation enhancement and area-selective atomic layer deposition of ruthenium using RuO4 and H2 gas
,”
Chem. Mater.
31
(
5
),
1491
1499
(
2019
).
22.
J.
Soethoudt
,
F.
Grillo
,
E. A.
Marques
,
J. R.
van Ommen
,
Y.
Tomczak
,
L.
Nyns
,
S.
Van Elshocht
, and
A.
Delabie
, “
Growth and size-dependent nanoparticle reactivity during ruthenium atomic layer deposition on dielectric substrates
,”
Adv. Mater. Interfaces
5
(
24
),
1800870
(
2018
).
23.
M.
Mattinen
,
J.
Hamalainen
,
F.
Gao
,
P.
Jalkanen
,
K.
Mizohata
,
J.
Raisanen
,
R. L.
Puurunen
,
M.
Ritala
, and
M.
Leskela
, “
Diffusion-mediated nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer deposition
,”
Langmuir
32
(
41
),
10559
10569
(
2016
).
24.
C. P.
Yeh
,
M.
Lisker
,
B.
Kalkofen
, and
E. P.
Burte
, “
High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma
,”
AIP Adv.
6
,
085111
(
2016
).
25.
K. M.
Kiehlbaugh
, “
Halogen-based plasma etching of novel field-effect transistor gate materials
,” Ph.D. thesis,
University of California
,
Berkeley
,
2009
.
26.
H.-X.
Zhang
,
C.-M.
Zhang
, and
P.-F.
Wang
, “
Atomic layer deposition of RuO2 thin films on SiO2 using Ru(EtCp)2 and O2 plasma
,” in
China Semiconductor Technology International Conference
,
2015
.
27.
H. B.
Profijt
and
W. M. M.
Kessels
, “
Ion bombardment during plasma-assisted atomic layer deposition
,”
ECS Trans.
50
(
13
),
23
34
(
2013
).
28.
M.
Napari
,
M.
Lahtinen
,
A.
Veselov
,
J.
Julin
,
E.
Ostreng
, and
T.
Sajavaara
, “
Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration
,”
Surf. Coat. Technol.
326
(
A
),
281
290
(
2017
).
29.
S.
Doniach
and
M.
Sunjic
, “
Many-electron singularity in X-ray photoemission and X-ray line spectra from metals
,”
J. Phys. C: Solid State Phys.
3
(
2
),
285
291
(
1970
).
30.
The International Center for Diffraction Data (ICDD), PDF Card No. 00-040-1290.
31.
The International Center for Diffraction Data (ICDD), PDF Card No. 00-006-0663.
32.
W. H.
Kim
,
S. J.
Park
,
D. Y.
Kim
, and
H.
Kim
, “
Atomic layer deposition of ruthenium and ruthenium-oxide thin films by using a Ru(EtCp)2 precursor and oxygen gas
,”
J. Korean Phys. Soc.
55
(
1
),
32
37
(
2009
).
33.
M. L.
Green
,
M. E.
Gross
,
L. E.
Papa
,
K. J.
Schnoes
, and
D.
Brasen
, “
Chemical vapor deposition of ruthenium and ruthenium dioxide films
,”
J. Electrochem. Soc.
132
(
11
),
2677
2685
(
1985
).
34.
M.
Schaefer
and
R.
Schlaf
, “
Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy
,”
J. Appl. Phys.
118
,
065306
(
2015
).
35.
H.
Kim
,
I.
Rabelo de Moraes
,
G.
Tremiliosi-Filho
,
R.
Haasch
, and
A.
Wieckowski
, “
Chemical state of ruthenium submonolayers on a Pt(111) electrode
,”
Surf. Sci.
474
,
L203
L212
(
2004
).
36.
C.
Zhao
,
M.
Pawlak
,
M. I.
Popovici
,
M.
Schaekers
,
E.
Sleeckx
,
E.
Vancoille
,
D.
Wouters
,
Z.
Tokei
, and
J.
Kittl
, “
Atomic layer deposition of Ru and RuO2 for MIMCAP applications
,”
ECS Trans.
25
,
377
387
(
2009
).
37.
A.
Foelske
,
O.
Barbieri
,
M.
Hahn
, and
R.
Kötz
, “
An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors
,”
Electrochem. Solid-State Lett.
9
(
6
),
A268
A272
(
2006
).
38.
J.
Lu
and
J. W.
Elam
, “
Low temperature ABC-type Ru atomic layer deposition through consecutive dissociative chemisorption, combustion, and reduction steps
,”
Chem. Mater.
27
,
4950
4956
(
2015
).
39.
M.
Popovici
,
B.
Groven
,
K.
Marcoen
,
Q. M.
Phung
,
S.
Dutta
,
J.
Swerts
,
J.
Meersschaut
,
J. A.
Van Den Berg
,
A.
Franquet
,
A.
Moussa
,
K.
Vanstreels
,
P.
Lagrain
,
H.
Bender
,
M.
Jurczak
,
S.
Van Elshocht
, and
A.
Delabie
, “
Atomic layer deposition of ruthenium thin films from (ethylbenzyl) (1-ethyl-1,4-cyclohexadienyl) Ru: Process characteristics, surface chemistry, and film properties
,”
Chem. Mater.
29
(
11
),
4654
4666
(
2017
).
40.
M.
Mattinen
,
J.
Hamalainen
,
M.
Vehkamaki
,
M. J.
Heikkila
,
K.
Mizohata
,
P.
Jalkanen
,
J.
Raisanen
,
M.
Ritala
, and
M.
Leskela
, “
Atomic layer deposition of iridium thin films using sequential oxygen and hydrogen pulses
,”
J. Phys. Chem. C
120
(
28
),
15235
15243
(
2016
).
41.
Q. M.
Phung
,
G.
Pourtois
,
J.
Swerts
,
K.
Pierloot
, and
A.
Delabie
, “
Atomic layer deposition of ruthenium on ruthenium surfaces: A theoretical study
,”
J. Phys. Chem. C
119
(
12
),
6592
6603
(
2015
).
42.
A.
Hakuli
and
A.
Kytokivi
, “
Binding of chromium acetylacetonate on a silica support
,”
Phys. Chem. Chem. Phys.
1
,
1607
1613
(
1999
).
43.
I. V.
Babich
,
Y. V.
Plyuto
,
P.
Van Der Voort
, and
E. F.
Vansant
, “
Gas-phase deposition and thermal transformations of Cr(acac)3 on the surface of alumina supports
,”
J. Chem. Soc., Faraday Trans.
93
,
3191
3196
(
1997
).
44.
R. L.
Puurunen
, “
Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
,”
J. Appl. Phys.
97
,
121301
(
2005
).
45.
H. W.
Kim
, “
Characteristics of Ru etching using ICP and helicon O2/Cl2 plasmas
,”
Thin Solid Films
475
,
32
35
(
2005
).

Supplementary Material

You do not currently have access to this content.