Quantitative colloidal ligand exchange on lead-halide perovskite nanocrystals (NCs) has remained a challenge due to the dynamic passivation of amines and carboxylic acids and the instability of core lead-halide perovskite systems. Here, we present a facile colloidal ligand exchange process using cinnamate acid ligands to quantitatively displace native oleate ligands on CsPbBr3 NCs. The short cinnamate ligands lead to a 23-fold enhancement of the electron-donating ability of the CsPbBr3 NCs when benzoquinone is used as an electron acceptor. A significantly increased photoredox activity is also observed in a complete photocatalytic reaction: the α-alkylation of aldehydes. Our results provide a new strategy to tune the photoredox activity of halide perovskite NCs as well as the exploration of NC-ligand interactions.

1.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
,
3692
3696
(
2015
).
2.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
, “
Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics
,”
Science
354
,
92
(
2016
).
3.
E. M.
Sanehira
,
A. R.
Marshall
,
J. A.
Christians
,
S. P.
Harvey
,
P. N.
Ciesielski
,
L. M.
Wheeler
,
P.
Schulz
,
L. Y.
Lin
,
M. C.
Beard
, and
J. M.
Luther
, “
Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
,”
Sci. Adv.
3
,
eaao4204
(
2017
).
4.
X.
Zhu
,
Y.
Lin
,
Y.
Sun
,
M. C.
Beard
, and
Y.
Yan
, “
Lead-halide perovskites for photocatalytic α-alkylation of aldehydes
,”
J. Am. Chem. Soc.
141
,
733
738
(
2019
).
5.
X.
Zhu
,
Y.
Lin
,
J.
San Martin
,
Y.
Sun
,
D.
Zhu
, and
Y.
Yan
, “
Lead halide perovskites for photocatalytic organic synthesis
,”
Nat. Commun.
10
,
2843
(
2019
).
6.
Z.
Zhang
,
K.
Edme
,
S.
Lian
, and
E. A.
Weiss
, “
Enhancing the rate of quantum-dot-photocatalyzed carbon–carbon coupling by tuning the composition of the dot’s ligand shell
,”
J. Am. Chem. Soc.
139
,
4246
4249
(
2017
).
7.
G.
Nedelcu
,
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
M. J.
Grotevent
, and
M. V.
Kovalenko
, “
Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)
,”
Nano Lett.
15
,
5635
5640
(
2015
).
8.
A.
Hazarika
,
Q.
Zhao
,
E. A.
Gaulding
,
J. A.
Christians
,
B.
Dou
,
A. R.
Marshall
,
T.
Moot
,
J. J.
Berry
,
J. C.
Johnson
, and
J. M.
Luther
, “
Perovskite quantum dot photovoltaic materials beyond the reach of thin films: Full-range tuning of A-site cation composition
,”
ACS Nano
12
,
10327
10337
(
2018
).
9.
D.
Parobek
,
B. J.
Roman
,
Y.
Dong
,
H.
Jin
,
E.
Lee
,
M.
Sheldon
, and
D. H.
Son
, “
Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals
,”
Nano Lett.
16
,
7376
7380
(
2016
).
10.
D. M.
Kroupa
,
M.
Vörös
,
N. P.
Brawand
,
B. W.
McNichols
,
E. M.
Miller
,
J.
Gu
,
A. J.
Nozik
,
A.
Sellinger
,
G.
Galli
, and
M. C.
Beard
, “
Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification
,”
Nat. Commun.
8
,
15257
(
2017
).
11.
D. M.
Kroupa
,
M.
Vörös
,
N. P.
Brawand
,
N.
Bronstein
,
B. W.
McNichols
,
C. V.
Castaneda
,
A. J.
Nozik
,
A.
Sellinger
,
G.
Galli
, and
M. C.
Beard
, “
Optical absorbance enhancement in PbS QD/cinnamate ligand complexes
,”
J. Phys. Chem. Lett.
9
,
3425
3433
(
2018
).
12.
S.
Lian
,
D. J.
Weinberg
,
R. D.
Harris
,
M. S.
Kodaimati
, and
E. A.
Weiss
, “
Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand
,”
ACS Nano
10
,
6372
6382
(
2016
).
13.
N. C.
Anderson
,
M. P.
Hendricks
,
J. J.
Choi
, and
J. S.
Owen
, “
Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding
,”
J. Am. Chem. Soc.
135
,
18536
18548
(
2013
).
14.
L. M.
Wheeler
,
E. M.
Sanehira
,
A. R.
Marshall
,
P.
Schulz
,
M.
Suri
,
N. C.
Anderson
,
J. A.
Christians
,
D.
Nordlund
,
D.
Sokaras
,
T.
Kroll
,
S. P.
Harvey
,
J. J.
Berry
,
L. Y.
Lin
, and
J. M.
Luther
, “
Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics
,”
J. Am. Chem. Soc.
140
,
10504
10513
(
2018
).
15.
J.
De Roo
,
M.
Ibáñez
,
P.
Geiregat
,
G.
Nedelcu
,
W.
Walravens
,
J.
Maes
,
J. C.
Martins
,
I.
Van Driessche
,
M. V.
Kovalenko
, and
Z.
Hens
, “
Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals
,”
ACS Nano
10
,
2071
2081
(
2016
).
16.
H.
Huang
,
M. I.
Bodnarchuk
,
S. V.
Kershaw
,
M. V.
Kovalenko
, and
A. L.
Rogach
, “
Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance
,”
ACS Energy Lett.
2
,
2071
2083
(
2017
).
17.
Z.
Liu
,
Y.
Bekenstein
,
X.
Ye
,
S. C.
Nguyen
,
J.
Swabeck
,
D.
Zhang
,
S.-T.
Lee
,
P.
Yang
,
W.
Ma
, and
A. P.
Alivisatos
, “
Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals
,”
J. Am. Chem. Soc.
139
,
5309
5312
(
2017
).
18.
A.
Dutta
and
N.
Pradhan
, “
Phase-stable red-emitting CsPbI3 nanocrystals: Successes and challenges
,”
ACS Energy Lett.
4
,
709
719
(
2019
).
19.
J.-K.
Sun
,
S.
Huang
,
X.-Z.
Liu
,
Q.
Xu
,
Q.-H.
Zhang
,
W.-J.
Jiang
,
D.-J.
Xue
,
J.-C.
Xu
,
J.-Y.
Ma
,
J.
Ding
,
Q.-Q.
Ge
,
L.
Gu
,
X.-H.
Fang
,
H.-Z.
Zhong
,
J.-S.
Hu
, and
L.-J.
Wan
, “
Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires
,”
J. Am. Chem. Soc.
140
,
11705
11715
(
2018
).
20.
E.
Yassitepe
,
Z.
Yang
,
O.
Voznyy
,
Y.
Kim
,
G.
Walters
,
J. A.
Castañeda
,
P.
Kanjanaboos
,
M.
Yuan
,
X.
Gong
,
F.
Fan
,
J.
Pan
,
S.
Hoogland
,
R.
Comin
,
O. M.
Bakr
,
L. A.
Padilha
,
A. F.
Nogueira
, and
E. H.
Sargent
, “
Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes
,”
Adv. Funct. Mater.
26
,
8757
8763
(
2016
).
21.
P.
Cottingham
and
R. L.
Brutchey
, “
On the crystal structure of colloidally prepared CsPbBr3 quantum dots
,”
Chem. Commun.
52
,
5246
5249
(
2016
).
22.
D. M.
Kroupa
,
N. C.
Anderson
,
C. V.
Castaneda
,
A. J.
Nozik
, and
M. C.
Beard
, “
In situ spectroscopic characterization of a solution-phase X-type ligand exchange at colloidal lead sulphide quantum dot surfaces
,”
Chem. Commun.
52
,
13893
13896
(
2016
).
23.
K.
Wu
,
G.
Liang
,
Q.
Shang
,
Y.
Ren
,
D.
Kong
, and
T.
Lian
, “
Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots
,”
J. Am. Chem. Soc.
137
,
12792
12795
(
2015
).
24.
K. E.
Knowles
,
M.
Tagliazucchi
,
M.
Malicki
,
N. K.
Swenson
, and
E. A.
Weiss
, “
Electron transfer as a probe of the permeability of organic monolayers on the surfaces of colloidal PbS quantum dots
,”
J. Phys. Chem. C
117
,
15849
15857
(
2013
).
25.
D.
Cahen
,
R.
Naaman
, and
Z.
Vager
, “
The cooperative molecular field effect
,”
Adv. Funct. Mater.
15
,
1571
1578
(
2005
).
26.
N. D.
Bronstein
,
M. S.
Martinez
,
D. M.
Kroupa
,
M.
Vörös
,
H.
Lu
,
N. P.
Brawand
,
A. J.
Nozik
,
A.
Sellinger
,
G.
Galli
, and
M. C.
Beard
, “
Designing Janus ligand shells on PbS quantum dots using ligand–ligand cooperativity
,”
ACS Nano
13
,
3839
3846
(
2019
).

Supplementary Material

You do not currently have access to this content.