The most successful and popular machine learning models of atomic-scale properties derive their transferability from a locality ansatz. The properties of a large molecule or a bulk material are written as a sum over contributions that depend on the configurations within finite atom-centered environments. The obvious downside of this approach is that it cannot capture nonlocal, nonadditive effects such as those arising due to long-range electrostatics or quantum interference. We propose a solution to this problem by introducing nonlocal representations of the system, which are remapped as feature vectors that are defined locally and are equivariant in O(3). We consider, in particular, one form that has the same asymptotic behavior as the electrostatic potential. We demonstrate that this framework can capture nonlocal, long-range physics by building a model for the electrostatic energy of randomly distributed point-charges, for the unrelaxed binding curves of charged organic molecular dimers, and for the electronic dielectric response of liquid water. By combining a representation of the system that is sensitive to long-range correlations with the transferability of an atom-centered additive model, this method outperforms current state-of-the-art machine-learning schemes and provides a conceptual framework to incorporate nonlocal physics into atomistic machine learning.

1.
J.
Behler
,
Angew. Chem., Int. Ed.
56
,
12828
(
2017
).
2.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
3.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
4.
A.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
5.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
6.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
7.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
,
Sci. Adv.
3
,
e1701816
(
2017
).
8.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
9.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
10.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
11635
(
2005
).
11.
R.
Kjellander
,
J. Chem. Phys.
148
,
193701
(
2018
).
12.
Z.
Guo
,
F.
Ambrosio
,
W.
Chen
,
P.
Gono
, and
A.
Pasquarello
,
Chem. Mater.
30
,
94
(
2018
).
13.
R.
Jorn
,
R.
Kumar
,
D. P.
Abraham
, and
G. A.
Voth
,
J. Phys. Chem. C
117
,
3747
(
2013
).
14.
R. H.
French
,
V. A.
Parsegian
,
R.
Podgornik
,
R. F.
Rajter
,
A.
Jagota
,
J.
Luo
,
D.
Asthagiri
,
M. K.
Chaudhury
,
Y.-m.
Chiang
,
S.
Granick
,
S.
Kalinin
,
M.
Kardar
,
R.
Kjellander
,
D. C.
Langreth
,
J.
Lewis
,
S.
Lustig
,
D.
Wesolowski
,
J. S.
Wettlaufer
,
W.-Y.
Ching
,
M.
Finnis
,
F.
Houlihan
,
O. A.
von Lilienfeld
,
C. J.
van Oss
, and
T.
Zemb
,
Rev. Mod. Phys.
82
,
1887
(
2010
).
15.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
16.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
,
J. Chem. Theory Comput.
14
,
4772
(
2018
).
17.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
18.
Z.
Deng
,
C.
Chen
,
X.-G.
Li
, and
S. P.
Ong
,
npj Comput. Mater.
5
,
75
(
2019
).
19.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
,
Phys. Rev. B
83
,
153101
(
2011
).
20.
T.
Bereau
,
D.
Andrienko
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
3225
(
2015
).
21.
T.
Bereau
,
R. A.
DiStasio
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).
22.
P.
Bleiziffer
,
K.
Schaller
, and
S.
Riniker
,
J. Chem. Inf. Model.
58
,
579
(
2018
).
23.
B.
Nebgen
,
N.
Lubbers
,
J. S.
Smith
,
A. E.
Sifain
,
A.
Lokhov
,
O.
Isayev
,
A. E.
Roitberg
,
K.
Barros
, and
S.
Tretiak
,
J. Chem. Theory Comput.
14
,
4687
(
2018
).
24.
K.
Yao
,
J. E.
Herr
,
D.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
,
Chem. Sci.
9
,
2261
(
2018
).
25.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
,
Phys. Rev. B
92
,
045131
(
2015
).
26.
S.
Faraji
,
S. A.
Ghasemi
,
S.
Rostami
,
R.
Rasoulkhani
,
B.
Schaefer
,
S.
Goedecker
, and
M.
Amsler
,
Phys. Rev. B
95
,
104105
(
2017
).
27.
C.
Böttcher
,
O.
van Belle
,
P.
Bordewijk
, and
A.
Rip
,
Theory of Electric Polarization
(
Elsevier Scientific Publication Co.
,
1973
).
28.
29.
R.
Resta
,
J. Phys.: Condens. Matter
22
,
123201
(
2010
).
30.
L.
Zhang
,
M.
Chen
,
X.
Wu
,
H.
Wang
,
W.
E
, and
R.
Car
, e-print arXiv:1906.11434 (
2019
).
31.
D. M.
Wilkins
,
A.
Grisafi
,
Y.
Yang
,
K. U.
Lao
,
R. A.
DiStasio
, and
M.
Ceriotti
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
3401
(
2019
).
32.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
33.
H.
Huo
and
M.
Rupp
, e-print arXiv:1704.06439 (
2017
).
34.
M.
Hirn
,
S.
Mallat
, and
N.
Poilvert
,
Multiscale Model. Simul.
15
,
827
(
2017
).
35.
M. J.
Willatt
,
F.
Musil
, and
M.
Ceriotti
,
J. Chem. Phys.
150
,
154110
(
2019
).
36.

Evaluation of the integral for p > 1 requires some form of regularization or short-distance cutoff to remove the singularity for rri.

37.
R.
Dreizler
and
E.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer Berlin Heidelberg
,
2012
).
38.
B.
Huang
and
O. A.
von Lilienfeld
, e-print arXiv:1707.04146 (
2017
).
39.

We indicate the order ν invariant vector with the notation |Vjp(ν), corresponding to the average over the rotation group of the νth tensor power of the translationally symmetrized vector.

40.
S.
De
,
A. A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Chem. Chem. Phys.
18
,
13754
(
2016
).
41.
A.
Grisafi
,
D. M.
Wilkins
,
M. J.
Willatt
, and
M.
Ceriotti
, “
Atomic-scale representation and statistical learning of tensorial properties
,” in
Machine Learning in Chemistry
, edited by
E. O.
Pyzer-Knapp
and
T.
Laino
(
ACS Publications
,
2019
), pp. 1–21.
42.
43.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
44.
K.
Cahill
,
Physical Mathematics
(
Cambridge University Press
,
2013
).
45.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
1989
).
46.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
47.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
K. M.
Merz
, and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
161727
(
2017
).
48.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
49.
A.
Glielmo
,
C.
Zeni
, and
A.
De Vita
,
Phys. Rev. B
97
,
184307
(
2018
).
50.
51.
S.
Pozdnyakov
,
A. R.
Oganov
,
A.
Mazitov
,
T.
Frolov
,
I.
Kruglov
, and
E.
Mazhnik
, e-print arXiv:1910.07513 (
2019
).

Supplementary Material

You do not currently have access to this content.