It is intuitive that the diffusivity of an isolated particle differs from those in a monodisperse suspension, in which hydrodynamic interactions between the particles are operative. Batchelor [J. Fluid Mech. 74, 1–29 (1976) and J. Fluid Mech. 131, 155–175 (1983)] calculated how hydrodynamic interactions influenced the diffusivity of a dilute suspension of spherical particles, and Russel et al. [Colloidal Dispersions (Cambridge University Press, 1991)] and Brady [J. Fluid Mech. 272, 109–134 (1994)] treated nondilute (higher particle volume fraction) suspensions. Although most particles lack perfect sphericity, little is known about the effects of hydrodynamic interactions on the diffusivity of spheroidal particles, which are the simplest shapes that can be used to model anisotropic particles. Here, we calculate the effects of hydrodynamic interactions on the translational and rotational diffusivities of spheroidal particles of arbitrary aspect ratio in dilute monodisperse suspensions. We find that the translational and rotational diffusivities of prolate spheroids are more sensitive to eccentricity than for oblate spheroids. The origin of the hydrodynamic anisotropy is that found in the stresslet field for the induced-dipole interaction. However, in the dilute limit, the effects of anisotropy are at the level of a few percent. These effects have influence on a vast range of settings, from partially frozen colloidal suspensions to the dynamics of cytoplasm.

1.
G. K.
Batchelor
, “
Brownian diffusion of particles with hydrodynamic interaction
,”
J. Fluid Mech.
74
,
1
29
(
1976
).
2.
G. K.
Batchelor
, “
Diffusion in a dilute polydisperse system of interacting spheres
,”
J. Fluid Mech.
131
,
155
175
(
1983
).
3.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1991
).
4.
J. F.
Brady
, “
The long-time self-diffusivity in concentrated colloidal dispersions
,”
J. Fluid Mech.
272
,
109
134
(
1994
).
5.
L. P.
Faucheux
and
A. J.
Libchaber
, “
Confined Brownian-motion
,”
Phys. Rev. E
49
,
5158
5163
(
1994
).
6.
D.
Braun
and
A.
Libchaber
, “
Thermal force approach to molecular evolution
,”
Phys. Biol.
1
,
P1
P8
(
2004
).
7.
M. P.
Brenner
, “
Screening mechanisms in sedimentation
,”
Phys. Fluids
11
,
754
772
(
1999
).
8.
J. S.
Wettlaufer
, “
Surface phase transitions in ice: From fundamental interactions to applications
,”
Philos. Trans. R. Soc., A
377
,
20180261
(
2019
).
9.
S. S. L.
Peppin
,
M.
Spannuth
, and
J. S.
Wettlaufer
, “
Onsager reciprocity in premelting solids
,”
J. Stat. Phys.
134
,
701
708
(
2009
).
10.
S.
Taber
, “
Frost heaving
,”
J. Geol.
37
,
428
461
(
1929
).
11.
B.
Hallet
, “
Self-organization in freezing soils: From microscopic ice lenses to patterned ground
,”
Can. J. Phys.
68
,
842
852
(
1990
).
12.
P.
Mazur
, “
Cryobiology: The freezing of biological systems
,”
Science
168
,
939
949
(
1970
).
13.
S. S. L.
Peppin
,
J. A. W.
Elliott
, and
M. G.
Worster
, “
Solidification of colloidal suspensions
,”
J. Fluid Mech.
554
,
147
166
(
2006
).
14.
S. S. L.
Peppin
,
M. G.
Worster
, and
J. S.
Wettlaufer
, “
Morphological instability in freezing colloidal suspensions
,”
Proc. R. Soc. A
463
,
723
733
(
2006
).
15.
S. S. L.
Peppin
,
J. S.
Wettlaufer
, and
M. G.
Worster
, “
Experimental verification of morphological instability in freezing aqueous colloidal suspensions
,”
Phys. Rev. Lett.
100
,
238301
(
2008
).
16.
J.
You
,
Z.
Wang
, and
M. G.
Worster
, “
Controls on microstructural features during solidification of colloidal suspensions
,”
Acta Mater.
157
,
288
297
(
2018
).
17.
J. M. H.
Schollick
,
R. W.
Style
,
A.
Curran
,
J. S.
Wettlaufer
,
E. R.
Dufresne
,
P. B.
Warren
,
K. P.
Velikov
,
R. P.
Dullens
, and
D. G.
Aarts
, “
Segregated ice growth in a suspension of colloidal particles
,”
J. Phys. Chem. B
120
,
3941
3949
(
2016
).
18.
M.
Spannuth
,
S. G. J.
Mochrie
,
S. S. L.
Peppin
, and
J. S.
Wettlaufer
, “
Dynamics of colloidal particles in ice
,”
J. Chem. Phys.
135
,
224706
(
2011
).
19.
J. M.
Rallison
and
E. J.
Hinch
, “
The effect of particle interactions on dynamic light scattering from a dilute suspension
,”
J. Fluid Mech.
167
,
131
168
(
1986
).
20.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
(
Dover
,
2000
).
21.
C.
De Kruif
,
J.
Jansen
, and
A.
Vrij
,
Sterically Stabilized Silica Colloid as a Model Supramolecular Fluid
(
Wiley-Interscience
,
1987
), pp.
315
343
.
22.
P. N.
Pusey
and
R. J. A.
Tough
, “
Hydrodynamic interactions and diffusion in concentrated particle suspensions
,”
Faraday Discuss. Chem. Soc.
76
,
123
136
(
1983
).
23.
R. J.
Phillips
,
J. F.
Brady
, and
G.
Bossis
, “
Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles
,”
Phys. Fluids
31
,
3462
3472
(
1988
).
24.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
25.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth–Heinemann
,
1991
).
26.
R. L.
Treloar
and
A. J.
Masters
, “
Short-time diffusion of anisotropic particles in suspension—A perturbative approach
,”
Mol. Phys.
74
,
1195
1207
(
1991
).
27.
I. L.
Claeys
and
J. F.
Brady
, “
Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions
,”
J. Fluid Mech.
251
,
443
477
(
1993
).
28.
Z.
Zheng
and
Y.
Han
, “
Self-diffusion in two-dimensional hard ellipsoid suspensions
,”
J. Chem. Phys.
133
,
124509
(
2010
).
29.
D. L.
Ermak
and
J. A.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
30.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Pearson Education
,
2014
).
31.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
1996
).
32.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
49
(
1987
).
33.
S.
Kim
, “
Sedimentation of two arbitrarily oriented spheroids in a viscous fluid
,”
Int. J. Multiphase Flow
11
,
699
712
(
1985
).
34.

Batchelor1 obtained a slightly different value of −1.83 for the O(ϕ) correction by using a mobility matrix which was exact for any arbitrary separation between two spheres, whereas we use a mobility matrix which is approximate since only two reflections are considered. However, even with the approximate mobility matrix, we obtain a good estimate for the correction at e = 0.

35.

The net change in the reflected velocity field along a spheroidal axis is the integral over the spheroid of the gradient of the velocity field along that direction, and it is averaged over all possible configurations of the suspension with the test spheroid fixed. This underlies the strength of the induced dipole.

36.
A. W.
Rempel
,
J. S.
Wettlaufer
, and
M. G.
Worster
, “
Interfacial premelting and the thermomolecular force: Thermodynamic buoyancy
,”
Phys. Rev. Lett.
87
,
088501
(
2001
).
37.
A.
Dehaoui
,
B.
Issenmann
, and
F.
Caupin
, “
Viscosity of deeply supercooled water and its coupling to molecular diffusion
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12020
12025
(
2015
).
38.
S.
Pramanik
and
J. S.
Wettlaufer
, “
Confinement effects in premelting dynamics
,”
Phys. Rev. E
96
,
052801
(
2017
).
39.
J.
Zinn-Justin
,
Quantum Field Theory and Critical Phenomena
(
Clarendon Press
,
1996
).
40.
W.
Moon
and
J. S.
Wettlaufer
, “
On the interpretation of Stratonovich calculus
,”
New J. Phys.
16
,
055017
(
2014
).
41.
A. T.
Chwang
and
T. Y.-T.
Wu
, “
Hydromechanics of low-Reynolds-number flow. Part 1. Rotation of axisymmetric prolate bodies
,”
J. Fluid Mech.
63
,
607
622
(
1974
).
42.
A. T.
Chwang
and
T. Y.-T.
Wu
, “
Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows
,”
J. Fluid Mech.
67
,
787
815
(
1975
).
43.
I. L.
Claeys
and
J. F.
Brady
, “
Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid
,”
J. Fluid Mech.
251
,
411
442
(
1993
).
44.
S.
Kim
, “
A note on Faxen laws for nonspherical particles
,”
Int. J. Multiphase Flow
11
,
713
719
(
1985
).
45.
L. F.
Shatz
, “
Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory flow
,”
Phys. Fluids
16
,
664
677
(
2004
).
46.
V.
Dabade
,
N. K.
Marath
, and
G.
Subramanian
, “
Effects of inertia and viscoelasticity on sedimenting anisotropic particles
,”
J. Fluid Mech.
778
,
133
188
(
2015
).
47.
V.
Dabade
,
N. K.
Marath
, and
G.
Subramanian
, “
The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow
,”
J. Fluid Mech.
791
,
631
703
(
2016
).
You do not currently have access to this content.